На доску выписаны числа 1,2,3,…,57. Какое наибольшее количество чисел среди них можно выбрать так, чтобы никакие два выбранных числа не отличались ровно в 2,5 раза?
1. Январь: А₁=106 Декабрь: А₁₂ - ? d=3 S₁₂-? A₁₂=A₁+3*11=106+33=139 (шт) - изготовили в декабре S₁₂=(A₁+A₁₂) * 12 =6*(106+139)=6*245=1470 (шт) - изготовили за год. 2 ответ: 139 шт, 1470 шт.
2. Аn=2*3^n A₁=2*3¹=6 A₂=2*3²=2*9=18 A₃=2*3³=2*27=54 В геометрической прогрессии квадрат каждого члена, отличного от первого и последнего, равен произведению соседних с ним членов: А₂²=А₁ * А₃ 18²=6*54 324=324 Условие выполняется, значит заданная последовательность есть геометрическая последовательность.
A) Область определения функции D(х)=R Область значений E(у)=[0; +∞) Нули функции: х=0 Промежутки знакопостоянства: у>0 при х∈(-∞;0)∪(0+∞) Функция убывает при х∈(-∞; 0). Функция возрастает при х∈(0; +∞) Функция ограничена снизу: у≥0 Экстремумы функии: у[min]=0 Функция непрерывна. Функция чётная(график симметричен относительно оси Оу) Функция непериодична. б) Область определения функции D(х)=R Область значений E(у)=(-∞; 0) Нули функции: х=0 Промежутки знакопостоянства: у<0 при х∈(-∞;0)∪(0+∞) Функция убывает при х∈(0; +∞). Функция возрастает при х∈(-∞; 0) Функция ограничена сверху: у≤0 Экстремумы функии: у[max]=0 Функция непрерывна. Функция чётная(график симметричен относительно оси Оу) Функция непериодична.
48 чисел.
Объяснение:
Составим пары целых чисел, отличающихся в 2,5 раза.
(2; 5); (4; 10); (6; 15); (8; 20); (10; 25); (12; 30); (14; 35); (16; 40); (18; 45);
(20;50); (22; 55)
Как видим, достаточно убрать числа, кратные 5, причем даже не все.
Числа 25 и 50 можно оставить, потому что 10 и 20 мы уже убрали.
Убираем числа 5, 10, 15, 20, 30, 35, 40, 45, 55 - всего 9 чисел.
Остается 57 - 9 = 48 чисел, среди которых никакие два числа не отличаются ровно в 2,5 раза.