М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
aazzziizz
aazzziizz
18.10.2021 07:00 •  Алгебра

Исследовать функцию на непрерывность и построить её график


Исследовать функцию на непрерывность и построить её график

👇
Открыть все ответы
Ответ:
evaeva2006
evaeva2006
18.10.2021

1.

216х² - 6у⁴ = 6 * (36х² - у⁴) = 6*(6х - у²)(6х + у²)     (ответ  Е),

2.

а)

S = 6а² = 6*(3х - 4)² = 6*(9х² - 24х + 16) = 54х² - 144х + 96,

б)

V = а³ = (3х - 4)³ = 27х³ - 108х² + 144х - 16,

3.

а)

4,3² - 2,58 + 0,3² = 4,3² - 2*4,3*0,3 + 0,3² = (4,3 - 0,3)² = 4² = 16,

б)

(44² - 12²) / (56² - 16²) = (44 - 12)(44 + 12) / (56 - 16)(56 + 16) =

= (32*56) / (40*72) = 28/45,

4.

1 число - х,

2 число - (х-52),

х² - (х-52)² = 208,

х² - х² + 104х - 2704 = 208,

104х = 208 + 2704,

104х = 2912,

х = 28 - 1 число,

х-52 = 28 - 52 = -24 - 2 число

4,7(22 оценок)
Ответ:
alina050804alina
alina050804alina
18.10.2021
Найдём касательные к графику функции y=-0,5x²+3. График указанной функции представляет собой параболу ветви которой направлены вниз, вершина находится в точке с координатами (0;3), ось симметрии совпадает с осью ординат. Касательные (из условия) перпендикулярны друг другу и равны, следовательно угол наклона к оси абсцисс одной из них будет 45°, а другой 135°. Угловой коэффициент k прямой равен тангенсу угла наклона, значит у одной касательной он будет
k₁=tg45°=1
а у другой 
k₂=tg135°=-1
Тогда уравнения касательных примут вид
y₁=x+b
y₂=-x+b
Найдём значение b, для этого приравняем функции y=-0,5x²+3 и y=x+b:
-0,5x²+3=x+b
-0,5x²+3-x-b=0
-0,5x²-x+(3-b)=0
Уравнение должно иметь один корень, значит дискриминант должен быть равен 0
D=(-1)²-4*(-0,5)*(3-b)=1+2(3-b)=1+6-2b=7-2b=0
-2b=-7
b=3,5
Уравнения касательных будут иметь вид:
y=x+3,5
y=-x+3,5
Находим пределы интегрирования. Сначала нижний:
-0,5x²+3=x+3,5
-0,5x²-x-0,5=0
D=0
x=1/(-0,5*2)=-1
Теперь верхний:
-0,5x²+3=-x+3,5
-0,5x²+x-0,5
D=0
x=-1/(-0,5*2)=1
Найдём площадь фигуры сначала слева от оси ординат, потом справа и сложим их:
S= \int\limits^0_{-1} {((x+ \frac{7}{2})-(- \frac{1}{2}x^2+3))} \, dx +\int\limits^1_0 {((-x+ \frac{7}{2})-(- \frac{1}{2}x^2+3)) } \, dx
=\int\limits^0_{-1} {(\frac{1}{2}x^2+x+ \frac{1}{2})} \, dx +\int\limits^1_0 {( \frac{1}{2}x^2-x+ \frac{1}{2}) } \, dx=
= (\frac{x^3}{6}+ \frac{x^2}{2}+ \frac{x}{2}|_{-1}^0)+(\frac{x^3}{6}- \frac{x^2}{2}+ \frac{x}{2}|_0^1)=0-( -\frac{1}{6}+ \frac{1}{2} - \frac{1}{2})+ \frac{1}{6} - \frac{1}{2}+ \frac{1}{2}
=\frac{1}{6}- \frac{1}{2} + \frac{1}{2}+ \frac{1}{6} - \frac{1}{2}+ \frac{1}{2} = \frac{2}{6}= \frac{1}{3} ед².

Вычислите площадь фигуры, ограниченной графиком функции у=-0.5х^2+3 и двумя касательными к этому гра
Вычислите площадь фигуры, ограниченной графиком функции у=-0.5х^2+3 и двумя касательными к этому гра
4,6(18 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ