Пары чисел, являющихся решениями уравнения х²-2у+3=0, должны быть такими, чтобы при их подстановке в уравнение х²-2у+3 = 0, в ответе действительно получался бы 0, а не какое-то другое число.
Согласно условию задачи, необходимо выбрать пары чисел, являющихся решением уравнения х²-2у+3 = 0, из 4 следующих пар:
1) х = 2, у = 3,5;
2) х = 0, у = -1,5;
3) х = 1; у = 2;
4) х = 5; у = 14.
После подстановки этих пар чисел получаем:
1) 2²-2·3,5 +3 = 4 - 7 +3 = 7 - 7 = 0; так как полученное в результате подстановки значение действительно равно, то это говорит о том, что данная пара чисел (2; 3,5) является решением уравнения х²-2у+3=0;
2) 0²-2·(-1,5) +3 = 0 + 3 + 3 = 6; мы получили 6, но так как 6 ≠ 0, то данная пара чисел (0; -1,5) не является решением уравнения х²-2у+3=0;
3) 1²-2·2 +3 = 1 - 4 + 3 = 4 - 4 = 0; мы получили 0; т.к. 0 = 0, то данная пара чисел (1; 2) является решением уравнения х²-2у+3=0;
4) 5²-2 · 14 + 3 = 25 - 28 + 3 = 28 - 28 = 0; мы получили 0; т.к. 0 = 0, то данная пара чисел (5; 14) является решением уравнения х²-2у+3=0.
Таким образом, решениями уравнения х²-2у+3=0 являются следующие пары чисел: (2; 3,5); (1; 2); (5;14).
ответ: решениями уравнения х²-2у+3=0 являются пары чисел: (2; 3,5); (1; 2); (5;14).
V - знак квадратного корня V(5x+7) - V(x+4) =4x+3 ОДЗ: {5x+7>=0 {x+4>=0
{5x>= -7 {x>= -4
{x>=-7/5 {x>= -4
Чтобы избавиться от рациональности, возведем все члены уравнения в квадрат, но для этого правая часть уравнения должна быть положительной: 4x+3>=0; x>= -3/4 У нас получилась следующая ОДЗ: {x>= -7/5 {x>= -4 {x>= -3/4 Решением этой системы будет промежуток: [-3/4; + бесконечность) Итак, возводим в квадрат: (5x+7)^2 - (x+4)^2 = (4x+3)^2 25x^2+70x+49-x^2-8x-16=16x^2+24x+9 24x^2+62x+33= 16x^2+24x+9 24x^2+62x+33-16x^2-24x-9=0 8x^2+38x+24=0 |:2 4x^2+19x+12=0 D= 19^2-4*4*12=169 x1=(-19-13)/8=-4 - это посторонний корень, т.к. не входит в промежуток [-3/4; + беск.) x2=(-19+13)/8= -3/4 Получается, что уравнение имеет один корень => k=1 Корень x=-3/4 принадлежит интервалу (-1;0), значит q=-3/4 Решим уравнение 5k+4q= 5*1+4*(-3/4)=5-3=2 ответ:2
(2; 3,5);
(1; 2);
(5;14)
Объяснение:
Пары чисел, являющихся решениями уравнения х²-2у+3=0, должны быть такими, чтобы при их подстановке в уравнение х²-2у+3 = 0, в ответе действительно получался бы 0, а не какое-то другое число.
Согласно условию задачи, необходимо выбрать пары чисел, являющихся решением уравнения х²-2у+3 = 0, из 4 следующих пар:
1) х = 2, у = 3,5;
2) х = 0, у = -1,5;
3) х = 1; у = 2;
4) х = 5; у = 14.
После подстановки этих пар чисел получаем:
1) 2²-2·3,5 +3 = 4 - 7 +3 = 7 - 7 = 0; так как полученное в результате подстановки значение действительно равно, то это говорит о том, что данная пара чисел (2; 3,5) является решением уравнения х²-2у+3=0;
2) 0²-2·(-1,5) +3 = 0 + 3 + 3 = 6; мы получили 6, но так как 6 ≠ 0, то данная пара чисел (0; -1,5) не является решением уравнения х²-2у+3=0;
3) 1²-2·2 +3 = 1 - 4 + 3 = 4 - 4 = 0; мы получили 0; т.к. 0 = 0, то данная пара чисел (1; 2) является решением уравнения х²-2у+3=0;
4) 5²-2 · 14 + 3 = 25 - 28 + 3 = 28 - 28 = 0; мы получили 0; т.к. 0 = 0, то данная пара чисел (5; 14) является решением уравнения х²-2у+3=0.
Таким образом, решениями уравнения х²-2у+3=0 являются следующие пары чисел: (2; 3,5); (1; 2); (5;14).
ответ: решениями уравнения х²-2у+3=0 являются пары чисел: (2; 3,5); (1; 2); (5;14).