1. Доказать тождество
sinα +sin5α+sin7α +sin11α = 4cos2α*cos3α*sin6α
sinα +sin5α+sin7α +sin11α =(sin5α +sinα) +(sin11α+sin7α) =
2sin3α*cos2α +2sin9α*cos2α =2cos2α*(sin9α+sin3α)=
2cos2α*2sin6α*cos3α =4cos2α*cos3α*sin6α
- - - - - - -
2.Найдите значение выражения sin2α*cos5α -sinα*cos6α ,если sinα = -1/√3
- - -
Cначала упростим выражение:
sin2α*cos5α -sinα*cos6α =2sinα*cos∝*cos5α - sinα*cos6α =
sinα(2cos5α*cos∝ - sinα*cos6α )=sinα*(cos6∝+cos4α -cos6α ) =
sinα*cos4α =sinα*(1 - 2sin²2α) = sinα*( 1 -2*(2sinα*cosα)² )=
= sinα*( 1 -8sin²α*cos²α ) =sinα*( 1 -8sin²α*(1 -sin²α) ) = || sinα =-1/√3 ||
= (-1/√3)*( 1 -8*(-1/√3)² *(1 - (-1/√3)² ) = - 1/√3 *( 1- (8/3)*(2/3) ) = 7√3 / 27
Объяснение:
х км/ч — скорость течения реки,
(х + 20) км/ч — собственная скорость теплохода ( скорость в стоячей воде)
Скорость движения теплохода по течению реки будет:
х+(х+20)=2х+20 км/час
Скорость движения теплохода против течения реки будет :
(х+20)-х=20 км/час
Значит можем найти время движения по течению и против течения:
время движения по течению
60 / (2х + 20) час.
против течения
60 / 20 = 3 час.
Если всего за 5,5 часа , то
5,5 - 3 = 2,5 час. - движение по течению
Отсюда :
60 / (2х + 20) = 2,5.
2,5 * (2х + 20)=60
5х + 50=60
5х=10
х = 2 км/час скорость течения реки
2 + 20 = 22 км/ч. собственная скорость теплохода ( скорость в стоячей воде)
(10x + у)/(у - х) = 12
Решим систему
Из (1) y = 9 - x
Из (2)
10х + (9-х) = 12(9-х-х)
9х +9 = -24х + 108
33х = 99
х = 3
Тогда число 36