1. Очевидно, что искомое число должно быть четырехзначным. Обозначим буквами a, b, c, d цифры этого числа.
2. Тогда искомое число можно представить в виде 1000 * a + 100 * b + 10 * c + d.
3. Известно, что
1000 * a + 100 * b + 10 * c + d - (a + b + c + d) = 2007;
999 * a + 99 * b + 9 * c = 2007;
111 * a + 11 * b + c = 223;
4. Видно, что данное выражение верно при, например, a = 2, b = 0, c = 1:
111 * 2 + 11 * 0 + 1 = 222 + 1 = 223;
5. Осталось определить цифру d. Искомое число можно представить как 2010 + d, а сумма его цифр равна (3 + d). Т.к. 2010 + d - (3 + d) = 2007 при любом d от 0 до 9, то d может быть равно любой цифре.
ответ: исходное число могло быть любым натуральным числом от 2010 до 2019, например, 2015.
28x^2+bx+15=-5x+8
28x^2+(b+5)x+7=0
раз точка касания единственная, значит дескриминант должен равен нулю
D=b^2+10b-759 =0
решаем получаем 2 корня b1=-33, b2=23
подставляем в уравнение графика y1=28x^2-33x+15
и y2=28x^2+23x+15
Теперь полученные уравнения касате и графиков опять приравниваем
-5х+8=28x^2-33x+15. Корень равен 0.5, т.е абцисса точки касания больше 0
аналогично для второго случая
-5х+8=28x^2+23x+15 Решаем, получаем корень -0.5. Это не удовлетворяет, раз абцисса меньше нуля.
Значит ответ в=-33. Конец