ответ: а=7 см, b= 4 см.
Объяснение:
"периметр прямоугольника равен 22 см. Если одну из его сторон уменьшить на 1 см, а вторую увеличить на 2 см, то достанем прямоугольник, площадь которого на 8 см2 больше чем площадь начального прямоугольника. Найдите стороны исходного прямоугольника"
***
Р =2(a+b), где а и b - размеры первоначального прямоугольника.
(а-1) см, (b+2) - размеры нового прямоугольника.
S1=ab см² - площадь первоначального прямоугольника;
S2=(a-1)(b+2) - площадь нового прямоугольника.
S2-S1=8 см².
(a-1)(b+2) - ab=8;
2(a+b)=22;
Это система уравнений. Решаем её:
ab+2a-b-2-ab=8;
2a-b=10;
a+b=11;
a=11-b;
2(11-b)-b=10;
22-2b-b=10;
-3b=-12;
b=4 см;
a=11-b=11-4=7 см.
Проверим:
периметр Р=2(4+7)=2*11=22 см. Всё верно!
Над всеми векторами черта. Надо найти координаты векторов А₁А₂; А₁А₃; А₁А₄. для чего от координат конца вектора отнимаем координаты начала.
А₁А₂=(-2;7;-6); А₁А₃(-6;1;-3); А₁А₄(-13;0;-3), затем находим определитель третьего порядка
-2 7 -6
-6 1 -3
-13 0 -3, у меня нет тут вертикальных черточек для него , определитель равен
40 0 15
-6 1 -3
-13 0 -3
=1*(-1)²⁺²*(-120+195)=75, далее берем модуль 75, и делим его на шесть. это есть объем тетраэдра и он равен 75/6=12.5/ед. куб./
Чтобы найти высоту, опущенную на грань А₁А₂А₃, надо найти площадь грани А₁А₂А₃ , т.е. половину модуля векторного произведения векторов А₁А₂ и А₁А₃
Векторное произведение находим как определитель
i j k
-2 7 -6
-6 1 -3, он равен
i *(-21+6) -j *(6-36)+ k*(-2+42)= -15i +30j +40 k
определитель находил путем его разложения по элементам первой строки, зная координаты вектора (-15;30;40), можем найти половину модуля этого произведения, что и будет площадью грани А₁А₂А₃ , т.е.
0.5*√(225+900+1600)=0.5*√2725=2.5√109≈26.1
Зная площадь s грани А₁А₂А₃ и объем тетраэдра v можно теперь найти высоту h, опущенную на эту грань из вершины А₄, она равна h=3v/s=
3*12.5/(2.5√109)=15√109/109≈1.44
8376473883838
Объяснение:
6473737736663636636
В ФОТО