1. Тригонометрическая функция синус периодическая с периодом 2π. На промежутке [-π/2; π/2] возрастает, принимая значения от -1 до 1:
sin(-π/2) = -1;
sin0 = 0;
sin(π/2) = 1,
а на промежутке [π/2; 3π/2] убывает от 1 до -1:
sin(π/2) = 1,
sin(π) = 0;
sin(3π/2) = -1.
2. Поскольку точки минимума 3π/2 и максимума π/2 принадлежат отрезку [-π/4; 3π/2], то наименьшее и наибольшее значения функции на заданном промежутке: -1 и 1.
V=(40-X)(64-X)X - функция. найти максимум, х∈(0, 40). найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х она равна 3х²-208х+2560 найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0 1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3= =(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3= =(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16 ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
1. Тригонометрическая функция синус периодическая с периодом 2π. На промежутке [-π/2; π/2] возрастает, принимая значения от -1 до 1:
sin(-π/2) = -1;
sin0 = 0;
sin(π/2) = 1,
а на промежутке [π/2; 3π/2] убывает от 1 до -1:
sin(π/2) = 1,
sin(π) = 0;
sin(3π/2) = -1.
2. Поскольку точки минимума 3π/2 и максимума π/2 принадлежат отрезку [-π/4; 3π/2], то наименьшее и наибольшее значения функции на заданном промежутке: -1 и 1.
наименьшее значение: -1;
наибольшее значение: 1.