Пусть
а1 = 2 - количество очков, набранных за первую минуту игры,
а2 = 4 - количество очков, набранных за вторую минуту,
а3 = 8 - количество очков, набранных за третью минуту,
.......
an - количество очков, набранных за последнюю минуту.
Количество очков постоянно удваивается, значит дело мы имеем с геометрической прогрессией со знаменателем q = 2.
Каждую минуту очки суммируются, т.е. актуальна будет формула суммы первых n членов прогрессии. Формула выглядит так:
Sn=b1(q^n-1)/q-1, q не равно 1.
К тому же, эта сумма должна быть не меньше 10 000.
Подставляя известные величины в формулу, получим такое неравенство:
2(2^n-1)/2-1>10 000
2^n-1>5000
2^n>5001
Ничего не остается, как вручную подобрать n.
При n = 13 выражение 2n будет больше 5001 (2^13 = 8192). Это значит, что через 13 минут Митя наберет больше 10 000 очков и перейдет на следующий уровень.
Арифметическая прогрессия - это последовательность, у которой каждое последующее число получается из предыдущего добавлением к нему постоянного числа d, называемого шагом или разностью. Шаг м.б. как положительным, так и отрицательным числом. 1) Проверим, будет ли постоянным шаг, если из n-го члена последовательности вычесть (n-1)-й член. n-й член нам дан: an = 5n + 3, найдём (n-1)-й: a(n-1) = 5 (n - 1) + 3 = 5n -2. Вычитаем, an - a(n-1) = 5n + 3 - 5n + 2 = 5 = d Получили постоянную, которая не зависит от n, значит, это арифметическая прогрессиия, d = 5. Считаем сумму 10 первых членов по формуле: Sn = (1/2) * (2*a1 + d*(n - 1)) * n Для этого надо знать ещё a1 = 5 *1 + 3 = 8 S10 = (1/2) * (2*8 + 5*(10-1))*10= (16 + 45)*5 = 305
x = 0 не удовлетворяет ОДЗ
-1/2 не подходит условию x ≥ 0
1/2 не подходит условию x < 0
ответ: нет корней