Система линейных уравнений с двумя неизвестными
x + y = 5
2x - 3y = 1
Система линейных ур-ний с тремя неизвестными
2*x = 2
5*y = 10
x + y + z = 3
Система дробно-рациональных уравнений
x + y = 3
1/x + 1/y = 2/5
Система четырёх уравнений
x1 + 2x2 + 3x3 - 2x4 = 1
2x1 - x2 - 2x3 - 3x4 = 2
3x1 + 2x2 - x3 + 2x4 = -5
2x1 - 3x2 + 2x3 + x4 = 11
Система линейных уравнений с четырьмя неизвестными
2x + 4y + 6z + 8v = 100
3x + 5y + 7z + 9v = 116
3x - 5y + 7z - 9v = -40
-2x + 4y - 6z + 8v = 36
Система трёх нелинейных ур-ний, содержащая квадрат и дробь
2/x = 11
x - 3*z^2 = 0
2/7*x + y - z = -3
Система двух ур-ний, содержащая куб (3-ю степень)
x = y^3
x*y = -5
Система ур-ний c квадратным корнем
x + y - sqrt(x*y) = 5
2*x*y = 3
Система тригонометрических ур-ний
x + y = 5*pi/2
sin(x) + cos(2y) = -1
Система показательных и логарифмических уравнений
y - log(x)/log(3) = 1
x^y = 3^12
Объяснение:
не контрольная!
1) b^(1/3)/29b^2 =1/ 29*b^(5/3)
2) log₃ (9а) если log₃ а = 0,3
log3 (9a) = log 3 9 + log 3 a = 2+ log 3 a = 2+0.3=2.3
3) ⁵√0,016 · ⁵√-0,02 = (0.016*-0.02)^(1/5) = ( -0.00032)^( 1/5 ) = -0.2
4) вы правильно написали
5) (2x + 14)/(x+4)(x-7) >=0
2(x+7)/(x+4)(x-7) >=0
{ x+7 >=0
{ (x+4)(x-7) >0
x >= -7
x>-4
x>7
[-7;-4) U (7;oo)
6) x-√2x^2-9x+5 = 3
√2x^2-9x+5 = x-3
2x^2-9x+5 = (x-3)^2
2x^2-9x+5=x^2-6x+9
x^2- 3x -4 = 0
D=9 +4* 1 *4 = 5^2
x=3+5/2=4
x2=3-5/2=-1
Подходит только 4