М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
piotrewch
piotrewch
08.09.2021 08:33 •  Алгебра

Уважаемые математики, очень нужна ваша Решите пошагово следующие задания


Уважаемые математики, очень нужна ваша Решите пошагово следующие задания

👇
Ответ:
Barvina779
Barvina779
08.09.2021

Объяснение:

табличные


Уважаемые математики, очень нужна ваша Решите пошагово следующие задания
4,4(81 оценок)
Открыть все ответы
Ответ:
katya100507
katya100507
08.09.2021
\lim_{n \to \infty} \frac{(n+1)^{4}-(n-1)^{4} }{(n+1)^{3}+(n+1)^{3}}
Неопределённость оо/оо. Чтобы раскрыть такую неопределённость обычно числитель и знаменатель делят на эн в максимальной степени. Для этого достаточно раскрыть скобки, привести подобные, найти эн в максимальной степени и разделить числитель и знаменатель на него.
Что мы и проделаем, но попутно будем делать упрощения, если получится. Для удобства сначала числитель преобразуем, потом знаменатель.

Числитель раскладываем по формуле разности квадратов. Причём два раза.
(n+1)^{4}-(n-1)^{4}=((n+1)^{2}-(n-1)^{2})*((n+1)^{2}+(n-1)^{2})=
=((n+1)-(n-1)) * ((n+1)+(n-1)) * ((n+1)^{2}+(n-1)^{2})=
=( n+1-n+1) * (n+1+n-1) * (n^{2}+2n+1+n^{2}-2n+1)=
=2 * 2n * (2n^{2}+2)=4n*2(n^{2}+1)=8n(n^{2}+1)

Знаменатель раскладываем по формуле суммы кубов
(n+1)^{3}+(n+1)^{3}=
=((n+1)+(n-1))*((n+1)^{2}-(n+1)(n-1)+(n-1)^{2})=
=2n*(n^{2}+2n+1-n^{2}+1+n^{2}-2n+1)=2n*(n^{2}+3)

Находим отношение числителя к знаменателю
\frac{8n(n^{2}+1)}{2n*(n^{2}+3)} = \frac{4(n^{2}+1)}{n^{2}+3}

Вот теперь переходим непосредственно к нахождению предела. Находим, что максимальная степень эн - это квадрат. Вот на эн в квадрате (n^{2}) и будем делить числитель и знаменатель
\lim_{n \to \infty} \frac{4(n^{2}+1)}{n^{2}+3}= \lim_{n \to \infty} \frac{4*(1+ \frac{1}{ n^{2}})}{1+ \frac{3}{n^{2}}}= \frac{4*(1+ \frac{1}{oo^{2}})}{1+ \frac{3}{oo^{2}}}= \frac{4(1+0)}{1+0} =4

При подстановке бесконечности получаем деление константы на бесконечность, что равно нулю.
4,8(41 оценок)
Ответ:
lubov9
lubov9
08.09.2021
Делим 100 на 2 - получаем 50. То есть 50 чисел которые не делятся на два.
Найдем сколько чисел из 50 делятся на 3, то есть разделим 50 на 3. Получается 16,6, то есть примерно 17. Значит 17 чисел из 50 делятся на три, остальные - нет. 50 минус 17 будет 33.

Также можно просто проверить перебором. Сразу запишем все нечетные числа от 1 до 100 так как они не делятся на 2.
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99
Из них уберем те, что делятся на 3.
1 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 53 55 59 61 65 67 71 73 77 79 83 85 89 91 95 97
И теперь просто посчитаем что осталось. Получим 33.
4,6(89 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ