Пусть х и у - два числа из условия. Тогда их разность x-y делится на 4,6 и 9, т.е. она делится на НОК(4,6,9)=36. Значит x-y=36k. Поэтому, если найти хотя бы одно число у, имеющее остатки 1,1 и 7 при делении на 4,6 и 9, то все остальные получатся из него по правилу x=y+36k, где k - любое целое число (понятно, что при каждом целом k, получаемое х будет иметь те же остатки при делении на 4,6,9). Понятно, что y должно быть вида y=1+12m, т.е. на интервале от 0 до 35 может быть только y=25.Значит, все нужные трехзначные имеют вид 25+36k при k=3,4,...,27. (т.е. от 133 до 997 с шагом 36) Значит их сумма (сумма арифметической прогрессии) равна (133+997)*25/2=14125.
Общее количество вариантов поставить 2 короля на доску равно 63*64=4032 (тк при размещении одного короля на i клетку доски. Другой король должен побывать на остальных 63 возможных позициях. И тд пока первый король не пройдет все 64 позиции. Это и будет общее количество возможных вариантов. Согласно правилам, король не может стоять под шахом другого короля. То есть когда оба короля стоят в соседних клетках по горизонтали вертикали и диагонали. Посчитаем общее количество не соответствующих правилам исходов. Ограничем вокруг поля рамку 8*8 Останется квадратик 6*6 по которому будем перемещать одного из королей сначало по области 6*6. Тогда другой король может стоять около первого на 8 позициях. И так всего клеток черный король пройдет 36. То всего возможных размещений: 36*8=288. Рассмотрим теперь случай, когда черный король будет ходить по рамке 8*8. Но не будет попадать в уголки рамки. То общее число таких клеточек равно: 6*4=24 В данном случае 2 король может находиться с другим королем в 5 позициях,то добавляеться еще 5*24=120 вариантов. И наконец случай когда король будет висеть в углах доски. То у второго короля есть 3 варианта,то есть еще + 3*4=12 вариантов. То всего не благоприятных позиций: 288+120+12=420. Откуда общее число благоприятных вариантов: 4032-420=3612 ответ:3612
Уравнение |x-2| = -3 корней не имеет, так как модуль выражения всегда неотрицательно, т.е. |x-2| ≥ 0.
Уравнение 3ˣ = (-1)³ равносильно уравнению 3ˣ = -1. Так как 3ˣ > 0 при любом x, то исходное уравнение решений не имеет.
Уравнения |x-2| = -3 и 3ˣ = (-1)³ РАВНОСИЛЬНЫ.