Табличные данные для построения графика представлены ниже
a) Промежутки возрастания и убывания функции Заданный график функции является параболой, т.к. а=1 >0 то ветви направлены вверх, значит слева от вершины график убывает, а справа от вершины возрастает.
Найдем вершину параболы
Тогда промежуток убывания функции
возрастания
б) Так как ветви параболы направлены вверх, то наибольшего значения - нет, наименьшее значение функции будет в вершине, при х =1
в) Найдем на графике, при каких значения У функция меньше нуля при
Для нахождения значений Х , необходимо решить
Решим квадратное уравнение
Вычислим дискриминант
Корни квадратного уравнения
тогда
Или такое же решение можно взять с графика. Здесь необходимо найти точки пересечения графика с осью ОХ и взять те значения Х при которых график функции будет находится строго ниже оси ОХ. На рисунке видно что это точки х=-1 и х=3, т.е.
Q1+Q2+Q3=0. ( Q1-количество теплоты, полученное сосудом)
Q1=c1*m1*(t2 - t1). ( c1-удельная теплоемкость алюминия=890Дж/кг*град, m1-его масса=0,045кг, t1-начальная температура =20, t2-конечная температура=30) .
Q2-количество теплоты, полученное водой.
Q2=c2*m2*(t2 - t1) (c2-удельная теплоемкость =4200Дж/кг*град, m2 - масса воды=0,15кг) .
Q3-количество теплоты, отданное нагретым телом.
Q3=c3*m3*(t2 - t3). ( c3-удельная теплоемкость вещества, m3-его масса=0,2кг, t3-его начальная температура =95) .
c1*m1*(t2 - t1) + c2*m2*(t2 - t1) + c3*m3*(t2 - t3)=0.
c3*m3*(t2 - t3)= - c1*m1*(t2 - t1) - c2*m2*(t2 - t1).
с3= - (с1*m1*(t2 - t1) + c2*m2*(t2 - t1)) / m3*(t2 - t3).
c3= - (890*0,045*(30 - 20) + 4200*0,15*(30 - 20)) / 0,2*(30 - 95)=515,4Дж /кг*град
ответ 515,4Дж /кг*град