М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
absde91
absde91
18.03.2020 01:33 •  Алгебра

, все кроме 1(не понимаюю) даю 16 б


, все кроме 1(не понимаюю) даю 16 б

👇
Открыть все ответы
Ответ:
Staslu
Staslu
18.03.2020

1)

y=\frac{1}{2}x^2-x+1\\\\ 1)\ x=0\\y=0-0+1=1\\\\ 2)\ x=-1\\y=\frac{1}{2}*1+1+1=\frac{5}{2}=2,5\\\\ 3)\ x=-2\\y=\frac{1}{2}*(-2)^2+2+1=5\\\\ 4)\ x=4\\y=\frac{1}{2}*4^2-4+1=5

2)

y=5x^2-4x-4\\\\1)\ y=-3\\-3=5x^2-4x-4\\5x^2-4x-4+3=0\\5x^2-4x-1=0\\D=36;\sqrt{D}=6\\x_1=1\\x_2=-\frac{1}{5}\\\\2) y=8\\8=5x^2-4x-4\\5x^2-4x-12=0\\D=256;\sqrt{D}=16\\x_1=-\frac{6}{5}\\x_2=2

3)

1) y=x²+10 - парабола , поднятая на 10 точек вверх, координаты вершины (0;10)

2) y=x²-5 - парабола, на 5 точек вниз, координаты вершины (0;-5)

3) y=(x+7)² - парабола, передвинутая на 7 точек влево, вершина (-7;0)

4) y=(x-8)²-парабола, передвинутая на 8 точек вправо, вершина (8;0)

4) y=x²

1) y=x²+5

2)y=x²-4

3)y=(x-3)²

4)y=(x+6)²

5)

На фото, c Ox пересекается  график функции y=x²-4.

Точки пересечения с Ox (-2;0) и (2;0)

И y=x²-1

Точки пересечения с Ox (-1;0) и (1;0)

С Oy : y=x²-1, (0;-1)

y=x²+2,5 , (0;2,5)

y=x²-4, (0;-4)

y=x²+4,5, (0;4,5)


1) найдите значение квадратичной функции y=0.5x^2-x+1 при; 1) x=0; 2) x=-1; 3) x=-2; 4) x=4. 2) при
4,7(3 оценок)
Ответ:
DanilaButov
DanilaButov
18.03.2020
Дробь — это выражение вида рq , где р и q — многочлены; р — числитель, а q — знаменатель дроби. например: a−bb 2−1 где p = a−b , а q = b 2−1 ; x 2+3y 3+x где p = x 2+3 , а q = y 3+x ; y 2−1y−1 где p = y 2−1 , а q = y−1 . многочлен — это частный случай дроби. например, многочлен y 3+2y+7 равен дроби y 3+2y+71 , а дробь 3x 2+5x−15 можно записать в виде многочлена 35x 2+x− 15 . из курса мы знаем, что значение обыкновенной дроби не изменится, если ее числитель и знаменатель одновременно умножить или разделить на одно и то же отличное от нуля число. например: 35 = 3•25•2 = 610 . дроби можно преобразовывать аналогичным способом: числитель и знаменатель дроби можно умножить на один и тот же многочлен (в частности, на один и тот же одночлен, на одно и то же отличное от нуля число); это — тождественное преобразование заданной дроби; числитель и знаменатель дроби можно разделить на один и тот же многочлен (в частности, на один и тот же одночлен, на одно и то же отличное от нуля число); это — тождественное преобразование заданной дроби, его называют сокращением дроби. данные правила называют основным свойством дроби. рассмотрим примеры. дробь x 2−xx 2 можно заменить на x−1x (числитель и знаменатель разделили на x ). дробь x 2+3xy+1 можно заменить на x 3+3x 2xy+x (числитель и знаменатель умножили на x ). дробь y 2−6y+9y 2−9 можно заменить на (y−3) 2(y−3)(y+3) = y−3y+3 (числитель и знаменатель разделили на y−3 ). равенство y 2−6y+9y 2−9 = y−3y+3 называется тождеством, а преобразование дроби y 2−6y+9y 2−9 в дробь y−3y+3— тождественным преобразованием заданной дроби, в данном случае, сокращением дроби. следует помнить, что тождеством наше равенство является при условии, что y ≠ 3 и y ≠ – 3 , так как знаменатель изначальной дроби при данных значениях переменной обращается в нуль и выражение y 2−6y+9y 2−9 теряет смысл.
4,8(64 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ