М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ilyaokorokov777
ilyaokorokov777
27.05.2020 00:02 •  Алгебра

Log2/3(x^2-2,5x)<-1
Развернутое решение

👇
Ответ:
SmartFox1
SmartFox1
27.05.2020

Объяснение:

\displaystyle\bf\\log_\frac{2}{3} (x^2-2,5x)⇒ ODZ выполняется

\bf\\2x^2-5x-30\\\\D=b^2-4ac=25-4\cdot2\cdot3=49\\\\x_1=(5+7)/4=3\\\\x_2=(5-7)/4=-0,5\\\\znaki:+++(-0,5)---(3)+++x\\\\Otvet:x\in(-\infty;-0,5)\cup(3;+\infty)

4,8(59 оценок)
Открыть все ответы
Ответ:
Xonus
Xonus
27.05.2020

2. Исследуем функцию на монотонность и на экстремум:

Критические точки функции:

,

,

Определим знак производной в каждом интервале монотонности:

, точка max, так как производная  изменила знак с "+" на "−",

, точка min, так как производная  изменила знак с "−" на "+".

Вычислим сам экстремум функции в этих точках:

3. Исследуем функцию на выпуклость, вогнутость кривой и перегиб:

Критические точки: , , ,  

Определим знак II производной в интервале кривизны:

, значит, кривая выпуклая на промежутке,

, значит, кривая вогнутая на промежутке;

Вычислим ординату точки перегиба:

4. Найдём дополнительные точки графика:

По результатам исследования строим график функции:

Пример 2. Исследовать функцию по первой и второй производной и построить её график:  .

1. Область определения функции ,

точка разрыва, чтобы определить её характер, найдём правосторонний и левосторонний пределы функции в этой точке:

Значит,  точка разрыва рода,

прямая  вертикальная асимптота графика функции.

Найдём наклонную асимптоту графика:

где угловой коэффициент прямой найдём по формуле

Так как  существует, то есть и наклонная асимптота. Вычисляем коэффициент b:

Значит, наклонная асимптота графика имеет уравнение .

2. Исследуем функцию на монотонность и на экстремум:

, учтем правило дифференцирования  

Критические точки функции:

,  , , , х=2,

4,6(47 оценок)
Ответ:
mpavl8628
mpavl8628
27.05.2020
Выражение: (-4*a*b^3*2.5*a^2)*(-4*a*b^3)*c^2*3*b^3
ответ: 120*a^4*b^9*c^2
Решаем по действиям:1. 4*2.5=10  X2.5   _ _4_  10 2. a*a^2=a^3  a*a^2=a^(1+2)  2.1. 1+2=3      +1       _2_       33. (-10*a^3*b^3)*(-4*a*b^3)=-10*a^3*b^3*(-4*a*b^3)4. 10*a^3*b^3*(-4*a*b^3)=-10*a^3*b^3*4*a*b^35. 10*4=40  X10   _4_ _   406. a^3*a=a^4  a^3*a=a^(3+1)  6.1. 3+1=4      +3       _1_       47. b^3*b^3=b^6  b^3*b^3=b^(3+3)  7.1. 3+3=6      +3       _3_       68. -(-40*a^4*b^6)=40*a^4*b^69. 40*3=120  X40   _3_ _  12010. b^6*b^3=b^9  b^6*b^3=b^(6+3)  10.1. 6+3=9      +6       _3_       9
Решаем по шагам:1. (-10*a*b^3*a^2)*(-4*a*b^3)*c^2*3*b^3  1.1. 4*2.5=10      X2.5       _ _4_      10 2. (-10*a^3*b^3)*(-4*a*b^3)*c^2*3*b^3  2.1. a*a^2=a^3      a*a^2=a^(1+2)    2.1.1. 1+2=3          +1           _2_           33. (-10*a^3*b^3*(-4*a*b^3))*c^2*3*b^3  3.1. (-10*a^3*b^3)*(-4*a*b^3)=-10*a^3*b^3*(-4*a*b^3)4. (-(-10*a^3*b^3*4*a*b^3))*c^2*3*b^3  4.1. 10*a^3*b^3*(-4*a*b^3)=-10*a^3*b^3*4*a*b^35. (-(-40*a^3*b^3*a*b^3))*c^2*3*b^3  5.1. 10*4=40      X10       _4_ _       406. (-(-40*a^4*b^3*b^3))*c^2*3*b^3  6.1. a^3*a=a^4      a^3*a=a^(3+1)    6.1.1. 3+1=4          +3           _1_           47. (-(-40*a^4*b^6))*c^2*3*b^3  7.1. b^3*b^3=b^6      b^3*b^3=b^(3+3)    7.1.1. 3+3=6          +3           _3_           68. 40*a^4*b^6*c^2*3*b^3  8.1. -(-40*a^4*b^6)=40*a^4*b^69. 120*a^4*b^6*c^2*b^3  9.1. 40*3=120      X40       _3_ _      12010. 120*a^4*b^9*c^2  10.1. b^6*b^3=b^9      b^6*b^3=b^(6+3)    10.1.1. 6+3=9          +6           _3_           9
4,5(13 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ