у = 2sinx + sin2x y`=2cosx + 2cos2x=2*2*cos(3x/2)*cos(x/2) y`=0 при 3x/2=pi/2+pi*k или x/2=pi/2+pi*n x=pi/3+2pi*k/3 или x=pi+2pi*n x=pi/3+2pi*k/3 минимальное и максимальное значение надо искать среди точек x=0;x=pi/3;x=pi;x=3pi/2 y(x=0)= 2*sin(0) + sin(2*0)=0 y(x=pi/3)= 2*sin(pi/3) + sin(2*pi/3)=3*корень(3)/2 = 2,598076 - локальный максимум y(x=pi)= 2*sin(pi) + sin(2*pi)=0 y(x=3*pi/2)= 2*sin(3*pi/2) + sin(2*3*pi/2)=-2 - локальный минимум во вложении график на исследуемом участке и тот же график на более широком участке
D(y)=R a<0 Ветки параболы в низ Нули функции -x^2+2x+8=0 D=36 корень из D=6 X1=(-2+6)/-2=-2 точка (-2;0) X2=(-2-6)/-2=4 точка(4;0) Координаты вершин параболы M=-b/2a=-2/-2=1 N=-D/4a=-36/-4=9 точка (1;9) Дальше просто отметь точки и дорисуй параболу f возрастает на промежутке( - бесконечность;1) бесконечность поставь символом :) f понижается на промежутке (1;+бесконечность) Нули (-2;0),(4;0) Функция отрицательна при ( - бесконечность;-2) U (4;+бесконечность)
ответ:№1
a)\sqrt{144}* \sqrt{64}=12*8=96
b)\sqrt{16} *\sqrt{49} =4*7=28\\
Объяснение: