Решение: Обозначим первоначальную массу олова в сплаве за (х) кг, тогда процентное содержание олова в сплаве составляет: х/16*100% При добавлении олова, масса сплава стала равной: 16+2=18(кг) а содержание олова в новом сплаве составило: (х+2) кг процентное содержание олова в новом сплаве равно: (х+2)/18*100% А так как в новом сплаве содержание олова на 5% больше чем в первоначальном сплаве, составим уравнение: (х+2)/18*100% - х/16*100%=5% 100*(х+2)/18 - 100*х/16=5 Приведём к общему знаменателю 144 8*100*(х+2) - 9*100*х=144*5 800х+1600 -900х=720 -100х=720-1600 -100х=-880 х=-880 : -100 х=8,8 (кг) -первоначальное количество олова в сплаве
ответ: Первоначальное количество олова в сплаве 8,8кг
Графиком функции y=x^2-3x+2 является парабола, у которой ветви направлены вверх, найдём точку вершины этой параболы: X(вершины)=-b/2a=-(-3)/2=3/2=1,5 подставим это значение в уравнение, чтобы получить Y(вершины): Y(вершины)=(3/2)^2-3*3/2+2=-0,25 затем находим точки пересечения этой параболы с осью ОХ, для этого мы приравниваем данное уравнение к нулю: x^2-3x+2=0 и ищем его корни: x1=1; x2=2; используя полученные точки строим параболу. теперь строим прямую Y=x-1 по точкам: A(1;0); B(0;-1) далее найдём точки пересечения этих графиков , для этого приравняем уравнения этих графиков: x^2-3x+2=x-1 корни этого уравнения равны: x1=1; x2=3; координаты точек пересечения этих графиков равны: C(1;0) и D(3;2) фигура ограничена линиями x=1 и x=3 и уравнениями графиков функций, обозначим их y=f1(x) и y=f2(x), тогда площадь фигуры вычисляется по формуле: S= считаем интеграл: S= S=4/3
Обозначим первоначальную массу олова в сплаве за (х) кг, тогда процентное содержание олова в сплаве составляет:
х/16*100%
При добавлении олова, масса сплава стала равной:
16+2=18(кг)
а содержание олова в новом сплаве составило:
(х+2) кг
процентное содержание олова в новом сплаве равно:
(х+2)/18*100%
А так как в новом сплаве содержание олова на 5% больше чем в первоначальном сплаве, составим уравнение:
(х+2)/18*100% - х/16*100%=5%
100*(х+2)/18 - 100*х/16=5 Приведём к общему знаменателю 144
8*100*(х+2) - 9*100*х=144*5
800х+1600 -900х=720
-100х=720-1600
-100х=-880
х=-880 : -100
х=8,8 (кг) -первоначальное количество олова в сплаве
ответ: Первоначальное количество олова в сплаве 8,8кг