1) Разложить на множители:
3a+3a²-b-ab=(3a+3a²)+(-b-ab)=3a(1+a)+(-(b+ab))=3a(1+a)-(b+ab)=3a(1+a)-b(1+a)=(1+a)(3a-b)
2) Преобразуйте произведения (n²-n-1)(n²-n+1) в многочлен стандартного вида:
Для того чтобы данное выражение преобразовать в многочлен, необходимо перемножить обе скобки
(n²-n-1)(n²-n+1)=n⁴-n³+n²-n³+n²-n-n²+n-1
далее группируем (или приводим подобные члены)
n⁴+(-n³-n³)+(n²+n²-n²)+(-n+n)-1=n⁴-2n³+n²-1
3) Известно,что 2(a+1)(b+1)=(a+b)(a+b+2).Найдите a²+b²
За основу берём выражение
2(a+1)(b+1)=(a+b)(a+b+2)
поочерёдно раскрываем скобки
2(аb+a+b+1)=a²+ab+2a+ab+b²+2b
2ab+2a+2b+2=a²+ab+2a+ab+b²+2b
группируем правую половину уравнения
2ab+2a+2b+2=a²+(ab+ab)+2a+b²+2b
2ab+2a+2b+2=a²+2ab+2a+b²+2b
a²+b²=2ab+2a+2b+2-(2ab+2a+2b)
a²+b²=2ab+2a+2b+2-2ab-2a-2b
снова группируем
a²+b²=(2ab-2ab)+(2a-2a)+(2b-2b)+2
a²+b²=2
x ∈{-2} ∪ [2;7]
Объяснение:
1) Найдём нули функции у₁ = х²-5х-14:
х²-5х-14 = 0
х₁,₂ = 5/2 ± √(25/4 +14) = 5/2 ± √(81/4) = 5/2 ± 9/2
х₁ = 5/2 + 9/2 = 14/2 = 7
х₂ = 5/2 - 9/2 = - 4/2 = -2
Графиком функции у₁ = х²-5х-14 является парабола, ветви которой направлены вверх; следовательно, у₁ = х²-5х-14 ≤0 на участке
x ∈ [-2; 7].
2) Неравенство х² ≥ 4 эквивалентно неравенству: х²- 4 ≥ 0.
Найдём нули функции у₂ =х²- 4:
х²- 4 = 0
х² = 4
х = ± √4
х₃ = - 2
х₄ = 2
Графиком функции у₂ = х²- 4 является парабола, ветви которой направлены вверх; функция у₂ = х²- 4 больше или равна нулю на участках:
x ∈(-∞; -2] ∪ [2;+∞)
3) Объединяем полученные решения, для чего на числовой оси отмечаем точки х₂ = -2; х₃ = -2; х₄ = 2; х₁ = 7 и находим перекрываемые области значений, одновременно удовлетворяющие неравенству х²-5х-14 ≤ 0 и неравенству х² ≥ 4:
x ∈{-2} ∪ [2;7]
ответ: x ∈{-2} ∪ [2;7]