Уравнение парабол имеет вид: y = ax² + bx + c.
1) Составим систему из трех уравнений, подставляя имеющиеся координаты:
Система:
-5 = a*0² + b*0 + c
7 = a * 5² + b*5 + c
-4 = a*(-5)² + b* (-5) + c
2) Решаем систему, получаем:
-5 = c (подставляем в 2 и 3 уравнения)
25a + 5b -5 = 7
25a - 5b -5 = -4
3) Складываем 2 и 3 уравнения, получаем:
25a + 5b -5 + 25a - 5b -5 = 7 - 4, приводим подобные
50а - 10 = 3
50а = 13
а = 13/50
а = 0,26
4) Подставляем во 2 уравнение из системы, находим коэффициент b:
25*0,26 - 5b -5 = -4
6,5 - 5b -5 = -4
-5b = -4 - 6,5 + 5
-5b = -5,5
b = -5,5/5
b = 1,1
Решив систему имеем: a=0, 26, b = 1,1, с = -5.
Формула абсциссы вершины параболы: х0 = -b/2а, подставляем:
х0 = -1,1/2*0,26 = -1,1/0,52 = 55/26
ответ: 55/26
Объяснение:
f(x) = ( x - 5 ) / ( x² + x - 6 )
Знаменатель дроби не может равняться нулю, значит для любого числа из области определения данной функции должно выполняться условие:
x² + x - 6 ≠ 0
Решим соответствующее квадратное уравнение и узнаем, при каких значениях x, знаменатель дроби равен нулю:
x² + x - 6 = 0
D = 1 + 24 = 25
x₁ = ( - 1 - 5 ) / 2 = - 6 / 2 = - 3
x₂ = (- 1 + 5) / 2 = 4 / 2 = 2
Корни этого уравнения нам говорят о том, что эти числа не подходят к условие, так как при таких значениях x знаменатель принимает значение 0, а значит они не входят в область определения функции.
Область определения функции - все числа кроме - 3 и 2.
Математически это записывается так:
x ∈ ( - ∞ ; - 3 ) ∪ ( - 3 ; 2 ) ∪ ( 2 ; + ∞ ).