Обозначим: x-первое число, y- второе число. 30% от первого числа x· 3/10, 40% от второго числа y·4/10, запишем уравнение: x·3/10+y·4/10=10. Во втором случае первое число увеличили на 10%, оно стало равно 110%, 110% от первого числа x·11/10, второе число уменьшили на 20%, следовательно оно равно: 100%-20%=80%, 80% от второго числа y·8/10, составим уравнение:x·11/10+y·8/10=26. Решим систему с двумя неизвестными: x·3/10+y·4/10=10 ·10 x·11/10+y·8/10=26. ·10
3x+4y=100 ·(-2) 11x+8y=260
-6x-8y=-200 11x+8y= 260, складываем эти уравнения, 5x=60 x=12. найдем значение y. 3x+4y=100 4y=100-3x=100-3·12. 4y=64 y=16 ответ: первое число равно 12, второе равно 16
1) 12 шаг/мин * 80 см = 960 см/мин = 9,6 (м/мин) - скорость первого судьи; 2) 10 шаг/мин * 80 см = 800 см/мин = (8 м/мин) - скорость второго судьи; 3) 9,6 м/мин + 8 м/мин = 17,6 (м/мин) - скорость сближения; 4) 17,6 м/мин * 20 мин = 352 (м) - расстояние между пунктами. ответ: 352 м.
1) 12 шаг/мин * 80 см = 960 (см/мин) - скорость первого судьи; 2) 960 см * 20 мин = 19 200 см = 192 (м первый судья до встречи; 3) 10 шаг/мин * 80 см = 800 см/мин - скорость второго судьи; 4) 800 см/мин * 20 мин = 16 000 см = 160 (м второй судья до встречи; 5) 192 м + 160 м = 352 (м) - расстояние между пунктами. ответ: 352 м.
x-первое число,
y- второе число.
30% от первого числа x· 3/10,
40% от второго числа y·4/10, запишем уравнение:
x·3/10+y·4/10=10.
Во втором случае первое число увеличили на 10%, оно стало равно 110%,
110% от первого числа x·11/10,
второе число уменьшили на 20%, следовательно оно равно: 100%-20%=80%,
80% от второго числа y·8/10, составим уравнение:x·11/10+y·8/10=26. Решим систему с двумя неизвестными:
x·3/10+y·4/10=10 ·10
x·11/10+y·8/10=26. ·10
3x+4y=100 ·(-2)
11x+8y=260
-6x-8y=-200
11x+8y= 260, складываем эти уравнения,
5x=60
x=12.
найдем значение y.
3x+4y=100
4y=100-3x=100-3·12.
4y=64
y=16
ответ: первое число равно 12, второе равно 16