Выражение содержит дробь,то знаменатель не равен 0 у=(2х-5)/(х+1)⇒х≠-1 D(f)∈(-∞;-1) U (-1;∞) Если выражение содержит радикал четной степени, то подкоренное выражение может быть только положительным или равняться 0. f(x)=√(5x-7)⇒5x-7≥0⇒x≥1,4⇒D(f)∈[1,4;∞) Если выражение содержит логарифмическую функцию,то выражение стоящее под знаком логарифма всегда должно быть только положительным ,основание больше 0 и не равняться 1 f(x)=log(2)(5-x)⇒5-х>0⇒x<5⇒D(f)∈(-∞;5) f(x)=log(x)2 D(f)∈(0;1) U (1;∞) Для f(x)=tgx D(f)∈(-π/2+πn;π/2+πn,n∈z) Для f(x)=ctgx D(f)∈(πn;π+πn,n∈z) В остальном D(f)∈(-∞;∞)
Объяснение:
y=18x\(2x²-3x-5)
2x²-3x-5≠0
D=b²-4ac
D=9+40=49
√D=7
x₁=(3-7)\4=-1
x₂=(3+7)\4=10\4=5\2=2,5
D(y)=(-∞;-1)∪(-1;2,5)∪(2,5;+∞)