М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

А)√11 а² где а>0

Б)√с³

В)√5х⁴

Г)√3b

👇
Ответ:
Keklo12
Keklo12
25.01.2023

a0\ \ \to \ \ \ \sqrt{11a^2}=|a|\cdot \sqrt{11}=a\cdot \sqrt{11}\\\\\\\sqrt{c^3}=\sqrt{c^2\cdot c}=|c|\cdot \sqrt{c}=c\cdot \sqrt{c}\ \ ,\ \ \ c\geq 0\\\\\\ \sqrt{5x^4}=\sqrt{5(x^2)^2}=|x^2|\cdot \sqrt{5}=x^2\cdot \sqrt5\ \ ,\ \ \ x\in R\\\\\\ \sqrt{3b}=\sqrt{3}\cdot \sqrt{b}\ \ ,\ \ b\geq 0

4,8(31 оценок)
Открыть все ответы
Ответ:
ttttt1509999
ttttt1509999
25.01.2023

Объяснение:

1)\frac{3x^{2}-5x+2}{x^{2} -9} \geq 0\\ \\ D=5^2-4*2*3=1\\ \\ x_1=\frac{5-1}{6}=\frac{2}{3} \\ \\ x_2=\frac{5+1}{6}=1\\ \\ \frac{3(x-1)(x-\frac{2}{3})}{(x-3)(x+3)} \geq 0\\ \\

  +                -                    +                    -                      +

_____-3_________2/3______1___________3_______

x∈(-∞;3)∪[2/3; 1]∪(3; +∞)

2)\frac{-x^2-5x+6}{x^2-4} \leq 0\\ \\ \frac{x^2+5x-6}{(x-2)(x+2)} \geq 0\\ \\ \frac{(x+6)(x-1)}{(x-2)(x+2)} \geq 0

    +                      -                       +                -            +

_______-6____________-2______1______2______

x∈(-∞; -6]∪(-2; 1]∪(2; +∞)

3)\frac{-2x^{2}-3x+2 }{x^2+5x} 0\\ \\ D=3^2+4*2*2=5^2\\ \\ x_1=\frac{-3+5}{4}=0,5\\ \\ x_2=\frac{-3-5}{4}=-2

\frac{2(x-0,5)(x+2)}{x(x+5)} 0

+                    -                   +             -               +

_____-5__________-2_____0____0,5______

x∈(-∞; -5)∪(-2; 0)∪(0,5; +∞)

4)\frac{x^2-5x+6}{x^2-7x}

    +               -                 +               -                   +

_______0_______2______3_________7________

x∈(0;2)∪(3;7)

4,8(24 оценок)
Ответ:
Vladyslav2009
Vladyslav2009
25.01.2023
1)
База индукции: 1

a_1=a_1+d*0=a_1 проверено.

Предположим, что утверждение верно для n=k.
a_{k}=a_1+d(k-1)=a_1+dk-d
Покажем, и докажем, что утверждение верно так же для n=k+1.
a_{k+1}=a_1+d[(k+1)-1]=a_1+dk
Так как , следуя предположению a_{k}=a_1+d(k-1)=a_1+dk-d то прибавив к данному выражению d. Мы получим  следующий член a_{k+1}=a_1+d[(k+1)-1]=a_1+dk.
Т.е. предположение верно. Ч.Т.Д.

2)
S_n= \frac{n[2a_1+d(n-1)]}{2}
База : 1
Проверка: S_1= \frac{2a_1}{2}=a_1

Предположение: n=k \Rightarrow S_k= \frac{k[2a_1+d(k-1)]}{2}= \frac{2a_1k+dk^2-dk}{2}

Теперь покажем и докажем, что данное выражение верно и при n=k+1:

Так как предыдущий член был равен k, то что бы узнать сумму первых k+1 членов, достаточно прибавить  k+1 член (используя формулу которую мы доказали ранее):
S_{k+1}= \frac{2a_1k+dk^2-dk}{2}+(a_1+dk)= \frac{2(a_1+dk)+2a_1k+dk^2-dk}{2}\\= \frac{2a_1+2dk+2a_1k+dk^2-dk}{2}= \frac{2a_1k+2a_1+dk^2+dk}{2}\\
= \frac{2a_1(k+1)+dk(k+1)}{2}= \frac{(k+1)(2a_1+dk)}{2}
т.е. мы пришли к изначальной формуле, если туда подставить k+1. Ч.Т.Д.

3)
Это не формула общего члена, это формула суммы.
При 
q=1 получается деление на ноль, поэтому сразу пишем q \neq 1
База: 1
b_1= \frac{b_1(1-q)}{(1-q)}=b_1
Предположим, что формула верна для: n=k
Покажем и докажем что формула верна для n=k+1:
Как и с суммой арифм.прогрессии. Мы добавим k+1 член к сумме.
b_{k+1}= \frac{b_1(1-q^k)}{1-q}+b_1q^k= \frac{(1-q)b_1q^k+b_1(1-q^k)}{1-q}\\= \frac{b_1[(1-q)q^k+(1-q^k)]}{1-q}= \frac{b_1[q^k-q^{k+1}+1-q^k]}{1-q}= \frac{b_1(1-q^{k+1})}{1-q}
Ч.Т.Д.
4,7(84 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ