Пусть скорость второго лыжника будет х км/ч, тогда скорость первого лыжника, будет х-2 км/ч (т.к. его скорость была на 2 км/ч меньше, чем у второго). Время, за которое первый лыжник преодолел расстояние в 40 км будет: 40/(х-2)=t Второй лыжник потратил столько же времени, сколько и первый, только преодолел 48 км, его время будет: 48/х=t
Т.к. время первого и второго лыжников равны, получаем уравнение: t=40/(х-2)=48/х
Решаем это уравнение относительно х: 40 = 48 х-2 х
40*х=48*(х-2) 40х=48х-48*2 40х=48х-96 48х-40х=96 8х=96 х=96:8 х=12 км/ч - скорость второго лыжника.
Скорость первого лыжника на 2 км/ч меньше, чем у второго, т.е.: 12-2=10 км/ч - скорость первого лыжника.
Решить системой? Хорошо. Вот вариант:пусть X - скорость катера, тогда Y - скорость реки. Свяжем их уравнениями: Поясню второе выражение: 2 часа это общее время движения, оно складывалось из времени движения1) вниз (vniz) по течению 2) вверх (vniz) по течению Решаем. Видно, что можно из первого высказывания взять 16 для второго высказывания. Получим: Вспоминаем о нашей сисеме. После преобразований (см. выше) получили:Вычитая или складывая почленно правые и левые части уравнений системы получим:2X = 40-2Y = -8, значитХ = 20 км/ч, Y=4 км/ч
2b (в кубе) -2b в квадрате +4b