Здесь речь пойдёт об ограничениях, которые накладываются заданием. Т.е. в задании присутствуют какие-то дополнительные условия, которые придумал составитель. Или ограничения выплывают из самого задания функции.
Что касается ограничений в задании - тут всё просто. Обычно, и искать-то ничего не надо, всё в задании уже сказано. Напомню, что ограничения, написанные автором задания, никак не отменяют принципиальные ограничения математики. Нужно просто не забыть учесть условия задания.
Например, такое задание:
Найти область определения функции:
на множестве положительных чисел.
Естественную область определения этой функции мы нашли выше. Эта область:
D(f)=(-∞ ; -1) ∪ (-1; 2] ∪ [6; +∞)
А теперь учитываем дополнительные ограничения. Слова "на множестве положительных чисел" означают, что иксы могут быть только положительные. Вместо этих слов может быть задано условие "где x>0", или "где х ∈ (0; +∞)". Если наложить это ограничение на ответ, получим новую область определения:
D(f)=(0; 2] ∪ [6; +∞)
Вот и все дела.
Объяснение:
a) 2x-5=0, x=2,5, x+3=0, x=-3, отмечаем на числовой прямой нули
функции, +[-3] - [2,5]+,
ответ: (-Беск.; -3] u [2,5; +Б)
б) - (-2) + (3) - (6)+ ,
нам нужно где < 0, ответ: (-Б;-2) u (3;6)
в) - [-1] + [3]___ +
ответ: (-Б;-1] u {3}