ИЛИ ТАКОЕ (не знаю как у вас в условии):
1024
Объяснение:
берем все возможные комбинации:
1 к 9, а с учетом что 10 возможных учебников то 10 вариаций
2 к 8 = 45 вариаций( 10 на первой позиции умножаем на 9 во второй и делим на 2 из-за повторений)
3 к 7 = 120 вариаций(10*9*8 и делим на 6)
4 к 6 = 210 вариаций (10*9*8*7 и делим на 24(2*3*4))
5 к 5 = 252 вариации (10*9*8*7*6 и делим на (2*3*4*5) все из за повторений, нам же не надо чтоб считалось разный порядок но на одной и той же фирме)
и теперь мы умножаем все кроме 5 к 5 на 2, т.к. тогда мы посчитали только в сторону 1 фирмы, а теперь и в сторону второй
выходит:
10*2+45*2+120*2+210*2+252=20+90+240+420+252=110+660+252=770+252=1022
точно быть уверенным в этом ответе не могу, но на мое мнение так должно решаться
редактированная часть:
узнав ответ из учебника в комментарии мы поняли что не хватает еще 2 вариантов:
0 учебников в 1 фирме и 0 учебников во второй
по-этому прибавляем еще 2
Я ответила только на 5 вопросов, нонадеюсь, это Итак,
1. Да, может. Пример 19*3=57
2.С=8. Я это выявила методом подстановки.
3. Да, можно. Все плюсы и один минус в квадрате 5х5. Этот минус будет по середине. Всего в квадрате 5х5 9 квадратов 3х3. Когда нарисуешь-увидишминут если минус будет стоять по середине то он будет входить во все это. 9 квадратов.
4. 3367. Опять же методом подстановки. Умножала каждое число на 33.
5. 73. Из 73 вычла 36 получила 37.
7. Нет, получить нельзя. Если число четное, то и кончаться в квадрате оно будет на четное число=> это четное число 4. А потом перебор. Ну я по крайней мере сидела с калькулятором и перебирала квадратные корни. Из того, что я перебирала, целого квадратного корня нету.
15.84
Объяснение:
Корень из 289 = 17.
Корень из 64 ÷ корень из 49 = 1.14
17-1.14 = 15.86