Объяснение:
мы сначала приравняем каждую скобку к 0 и нанесем на числовую прямую полученные корни уравнений
x-2 = 0 x = 2
x-3= 0 x=3
_ _ + _ + +
23
теперь посмотрим, какие знаки имеют наши скобки на каждом интервале
(-∞; 2) x-2 < 0 x-3 < 0 отмечаем это на числовой прямой
[2; 3) x-2 ≥ 0 x-3 <0
[3; +∞) x-2 >0 x-3 ≥ 0
теперь раскрываем скобки согласно нашим знакам
(-∞; 2) - обе скобки отрицательны, значит
-(x-2)- (x-3) =1 -x+2 -x +3 =1 -2x = -4 x=2 , однако х=2 ∉ (-∞;2), значит на этом интервале решений нет х ∈∅
[2; 3) знаки + и -, значит будет
(х-2)-(х-3)=1 х -2 -х +3=1 1=1т.е. равенство выполняется для ∀х на этом интервале, тогда ответом на этом интервале будет
2≤ х < 3
[3;+∞) - обе скобки положительны, тогда запишем
(х-2)+(х-3) = 1 2х = 6 х = 3 эта точка ∈ [3;+∞), значит это тоже наше решение
теперь объединим наши решения и получим ответ
х ∈ [2;3]
2) ( 3x + 3y) - bx - by = 3(x + y) - b(x + y) = (x+y)(3 - b)
3) (4n - 4) + ( c - nc) = 4( n - 1) + c( 1 - n) = (4 - c)(n - 1)
4) ( x⁷ + x³) - 4x⁴ - 4 = x³(x⁴ + 1) - 4( x⁴ + 1) = (x⁴+1)( x³ - 4)
5) (6mn - 3m) + ( 2n - 1) = 3m( 2n - 1) + ( 2n - 1)=(2n - 1)(3m + 1)
6) (4a⁴ - 8a) +(10y - 5ya³) = 4a(a³ - 2) + 5y(2 - a³) = (4a - 5y)(a³ - 2)
7) a²b² - a + ab² - 1 = (a²b² + ab²) - (a + 1) = ab²(a + 1) - (a+1)=(a+1)(ab² - 1)
8) (xa - xb²) + (zb² - za) - ya + yb² = x(a-b²)+z(b² -a) - y(a -b²)=(x - z - y)(a - b²)