Если мы умножим квадратичный член ax ^ 2-2x + b на квадратичный член x ^ 2 + ax-1, мы получим квадратичный член, где коэффициенты x ^ 2 и x равны 8 и (-2) соответственно, найдите а и б
Ну смотри,для уравнения вида a^x=b решением является x=loga(b) ln - это тот же самый логарифм, только в его основании (число a основание логарифма) есть экспонента, число эйлера, его значение тебе знать не обязательно, только в высшей математики и то не важно... она не записывается как loge(b) , а пишется сразу ln(b). Следующее равенство я не знаю к чему вы записали... С обеих сторон делим на 4, получаем e^ln(2)=1 , по свойство логарифма a^loga(b)=b , получаем равенство 2=1 , что не верно... думаю ваш вопрос состоял в том, что такое натуральный логарифм и экспонента и как решать с ними уравнения, решается всё также как и с обычными логарифмами, просто заместо целых чисел, у вас будут стоять экспоненты, заместо логарифмов вида loga(b) , будут натуральные логарифмы вида ln(b), спрашивается зачем всё так сложно? Ну на самом деле для графика e^x y=x является касательной, потому для этого частного случая и придумали такое число... также с ними многое связано в высшей математики, к примеру интегрирование... разложение функции в ряд и пределы..
Последовательные четные числа отличаются друг от друга на 2, поэтому:
Пусть среднее из этих трех чисел будет х , тогда первое будет х - 2, а последнее х + 2. Тогда квадрат второго запишем как х², а удвоенное произведение первого и третьего - как 2(х - 2)(х + 2). Учитывая, что х² на 56 меньше, чем 2(х - 2)(х + 2), составим уравнение и решим его: Применяем формулу разности квадратов:
Второй корень не подходит по условию (нам нужны только натуральные числа), значит, х = 8; тогда три задуманных числа - это 6, 8 и 10.
ln - это тот же самый логарифм, только в его основании (число a основание логарифма) есть экспонента, число эйлера, его значение тебе знать не обязательно, только в высшей математики и то не важно... она не записывается как loge(b) , а пишется сразу ln(b).
Следующее равенство я не знаю к чему вы записали...
С обеих сторон делим на 4, получаем e^ln(2)=1 , по свойство логарифма a^loga(b)=b , получаем равенство 2=1 , что не верно... думаю ваш вопрос состоял в том, что такое натуральный логарифм и экспонента и как решать с ними уравнения, решается всё также как и с обычными логарифмами, просто заместо целых чисел, у вас будут стоять экспоненты, заместо логарифмов вида loga(b) , будут натуральные логарифмы вида ln(b), спрашивается зачем всё так сложно? Ну на самом деле для графика e^x y=x является касательной, потому для этого частного случая и придумали такое число... также с ними многое связано в высшей математики, к примеру интегрирование... разложение функции в ряд и пределы..