1.
a)
x² + 4x + 10 ≥ 0
Рассмотрим функцию у = x² + 4x + 10.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² + 4x + 10 = 0
D = 16 - 40 = - 24 < 0
нулей нет, значит график не пересекает ось Ох.
Схематически график изображен на рис. 1.
у > 0 при x ∈ (- ∞; + ∞)
ответ: 2) Решением неравенства является вся числовая прямая.
b)
- x² + 10x - 25 > 0 | · (- 1)
x² - 10x + 25 < 0
Рассмотрим функцию у = x² - 10x + 25.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² - 10x + 25 = 0
(x - 5)² = 0
x = 5
Схематически график изображен на рис. 2.
у < 0 при x ∈ {∅}
ответ: 1) Неравенство не имеет решений.
c)
x² + 3x + 2 ≤ 0
Рассмотрим функцию у = x² + 3x + 2.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² + 3x + 2 = 0
D = 9 - 8 = 1
Схематически график изображен на рис. 3.
у ≤ 0 при x ∈ [- 2; - 1]
ответ: 4) Решением неравенства является закрытый промежуток.
d)
- x² + 4 < 0 | · (- 1)
x² - 4 > 0
Рассмотрим функцию у = x² - 4.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² - 4 = 0
x² = 4
x = ± 2
Схематически график изображен на рис. 4.
у > 0 при x ∈ (- ∞; - 2) ∪ (2; + ∞)
ответ: 6) Решением неравенства является объединение двух промежутков.
2.
(x - a)(2x - 1)(x + b) > 0
x ∈(- 4; 1/2) ∪ (5; + ∞)
Решение неравенства показано на рис. 5.
Найдем нули функции у = (x - a)(2x - 1)(x + b).
(x - a)(2x - 1)(x + b) = 0
(x - a) = 0 или (2x - 1) = 0 или (x + b) = 0
x = a x = 1/2 x = - b
Из решения неравенства следует, что нулями являются числа - 4, 1/2 и 5. Значит
или
или
ответ: a = - 4, b = - 5 или a = 5, b = 4.
Подробнее - на -
Объяснение:
ответ: x∈ (-∞;0)∨(0;∞)
Объяснение:
Cначало решим уравнение:
(2/х)^8 = 3125(1-х²) ОДЗ x≠0
Перепишем уравнение в виде:
3125*x^10-3125*x^8+2^8=0 (3125=5^5 ; 2^8=4^4)
5^5*x^10 -5^5*x^8 +4^4=0
4 *5^5/4 *x^10 -5*5^4 *x^8 +4^4=0 (поделим обе части уравнения на 4^4)
4* ( (5/4)^5 *x^10) -5* ( (5/4)^4*x^8) +1=0
Cделаем замену: 5x^2/4=t>0
4t^5-5t^4+1=0
(4t^5-4) - (5t^4-5)=0 (применим формулу разности степеней t^n-1^n)
4*(t-1)*(t^4+t^3+t^2+t) -5*(t-1)*(t^3+t^2+t+1) =0
(t-1)* ( 4*(t^4+t^3+t^2+t) -5*(t^3+t^2+t+1) )=0
(t-1)* (4t^4-t^3-t^2-t-1)=0
4t^4-t^3-t^2-1=4t^4-4 - ( (t^3-1) +(t^2-1) +(t-1) )
(t-1)*( 4*(t^3+t^2+t+1) -(t^2+t+1) -(t+1) -1)=(t-1)*(4t^3+3t^2+2t+1)
Итак,уравнение принимает вид:
(t-1)^2*(4t^3+3t^2+2t+1)=0
Нужно решить неравенство: (2/х)^8 ≥ 3125(1-х²)
Которое сводится к неравенству:
(t-1)^2*(4t^3+3t^2+2t+1)>=0
тк t>0 , 4t^3+3t^2+2t+1>0 , (t-1)^2>0.
Тогда неравенство :
(t-1)^2*(4t^3+3t^2+2t+1)>=0 (верно при любых t, кроме t=0 cогласно ОДЗ)
А значит верно и для любого x ,кроме x=0
ответ: x∈ (-∞;0)∨(0;∞)
cb = 10*c + b
bac - cb = 100*b + 10*a + c - 10*c - b = 99*b + 10*a - 9*c