Объяснение:
У нас есть последовательность и нужно найти является ли какое то число членом этой последовательности. Для этого достаточно приравнивать формулу для последовательности и наше число. Если получится целый n то число является членом если получится не целое то число не является членом последовательности.
1)n^2-4=16
n=2√5
Это значит что 16 не является членом последовательности потому что член последовательности не может быть иррацинальным.
2)n^2-4=77
n^2=81
n=±9
Значит 77 является членом последовательности.
ответ:√(2x + 3) + √(4 - x) = √(3x + 7)
Область определения:
{ 2x + 3 >= 0
{ 4 - x >= 0
{ 3x + 7 >= 0
Получаем x ∈ [-3/2; 4]
Теперь решаем само уравнение. Перенесем так
√(2x + 3) = √(3x + 7) - √(4 - x)
Возводим в квадрат обе части
2x + 3 = 3x + 7 + 4 - x - 2√((3x+7)(4-x))
Переносим корень с плюсом налево, а все остальное направо
2√((3x+7)(4-x)) = 2x + 11 - 2x - 3 = 8
Делим на 2 и раскрываем скобки под корнем
√(12x - 3x^2 + 28 - 7x) = 4
Возводим опять в квадрат
-3x^2 + 5x + 28 = 16
-3x^2 + 5x + 12 = 0
Меняем знаки
3x^2 - 5x - 12 = 0
D = 5^2 + 4*3*12 = 25 + 144 = 169 = 13^2
x1 = (5 - 13)/6 = -8/6 = -4/3 > -3/2 - подходит
x2 = (5 + 13)/6 = 18/6 = 3 < 4 - подходит
ответ: x1 = -4/3; x2 = 3
\
3х²-3+2х
Объяснение:
2х²+3х+х²-3х-3+2х=
1)2х²+х²=3х²
2)3х-3х+2х=2х
і там є -3 до нього немає схожих, тому ось