ответ: 115 км/час.
Объяснение:
Дано.
Скорость по ровному участку Vровн. = х км/час.
Скорость под гору V под гору =х+5 км/час.
Скорость в гору V в гору = х-15 км/час.
Дорога от А к В равна 100 км в гору
Время туда и обратно затратил 1 час 50 мин.
Решение.
t1= S в гору/(x-15)час =100/(х-15).
t2= S под гору /(х+5) час = 100/(х+5).
Общее время 1 5/6 часа
100/(х-15) + 100/(х+5) = 1 5/6.
После преобразования получим уравнение
11х²-1310х+5175=0.
а=11; b= -1310; c= 5175;
D=1488400 >0 - 2 корня
х1= 115; х2= 4,09 - не соответствует условию.
Скорость автомобиля по ровному участку равна 115 км/час.
Проверим:
Скорость в гору равна 115-15=100 км/час
Скорость под гору равна 115+5=120 км/час
Время в пути 100/100+100/120=1+5/6 =1 5/6 часа или 1 час 50 минут.
Всё правильно!
Пусть v1 км/ч и v2 км/ч - скорости первого и второго велосипедистов соответственно. За время t=15 мин=1/4 ч. первый велосипедист продет расстояние s1=v1*t=v1/4 км, а второй велосипедист - расстояние s2=v2*t=v2/4 км. По условию, v1/4=v2/4+2, откуда v1=v2+8 км/ч. Пусть R - радиус окружности, по которой едет второй велосипедист, тогда 4*R - радиус окружности, по которой едет первый велосипедист. Пусть n - число оборотов, которое совершит за 15 мин. первый велосипедист, тогда s1=2*π*4*R*n=8*π*R*n км. Тогда за это время второй велосипедист совершит 3*n оборотов, поэтому s2=2*π*R*3*n=6*π*R*n км. Составим пропорцию:
s1/s2=v1*t/(v2*t)=8*π*R*n/(6*π*R*n), откуда v1/v2=8/6=4/3 и v1=4/3*v2. Таким образом, получена система уравнений:
v1=v2+8
v1=4/3*v2
Решая её, находим v2=24 км/ч и v1=32 км/ч.
ответ: 32 и 24 км/ч.
ответ на рисунке, просто перерисуй