Сначала немного теории. Что в данном случае обозначает математическое слово «линейных»? Это значит, что в уравнения системы все переменные входят в первой степени: без всяких причудливых вещей вроде и т.п., от которых в восторге бывают только участники математических олимпиад.
В высшей математике для обозначения переменных используются не только знакомые с детства буквы .
Довольно популярный вариант – переменные с индексами: .
Либо начальные буквы латинского алфавита, маленькие и большие:
Не так уж редко можно встретить греческие буквы: – известные многим «альфа, бета, гамма». А также набор с индексами, скажем, с буквой «мю»:
Использование того или иного набора букв зависит от раздела высшей математики, в котором мы сталкиваемся с системой линейных уравнений. Так, например, в системах линейных уравнений, встречающихся при решении интегралов, дифференциальных уравнений традиционно принято использовать обозначения
Но как бы ни обозначались переменные, принципы, методы и решения системы линейных уравнений от этого не меняются. Таким образом, если Вам встретится что-нибудь страшное типа , не спешите в страхе закрывать задачник, в конце-концов, вместо можно нарисовать солнце, вместо – птичку, а вместо – рожицу (преподавателя). И, как ни смешно, систему линейных уравнений с данными обозначениями тоже можно решить.
Пример 1
Решить систему линейных уравнений:
Здесь у нас дана система из двух уравнений с двумя неизвестными. Обратите внимание, что свободные члены (числа 5 и 7) расположены в левой части уравнения. Вообще говоря, без разницы, где они находятся, слева или справа, просто в задачах по высшей математике нередко они расположены именно так. И такая запись не должна приводить в замешательство, при необходимости систему всегда можно записать «как обычно»: . Не забываем, что при переносе слагаемого из части в часть у него нужно поменять знак.
Что значит решить систему линейных уравнений? Решить систему уравнений – это значит найти множество её решений. Решение системы представляет собой набор значений всех входящих в неё переменных, который обращает КАЖДОЕ уравнение системы в верное равенство. Кроме того, система может быть несовместной (не иметь решений). Не тушуйтесь, это общее определение =) У нас же будет всего лишь одно значение «икс» и одно значение «игрек», которые удовлетворяют каждому уравнению с-мы.
Существует графический метод решения системы, с которым можно ознакомиться на урокеПростейшие задачи с прямой. Там же я рассказал о геометрическом смысле системы двух линейных уравнений с двумя неизвестными. Но сейчас на дворе эра алгебры, и числа-числа, действия-действия.
Решаем: из первого уравнения выразим:
Полученное выражение подставляем во второе уравнение:
Раскрываем скобки, приводим подобные слагаемые и находим значение :
Далее вспоминаем про то, от чего плясали:
Значение нам уже известно, осталось найти:
ответ: x=-4,y=1
1) (х+3)(х-2)-(х+4)(х-1)=3х
(х^2-2x+3x-6)-(x^2-x+4x-4)=3x
x^2+x-6-(x^2+3x-4)=3x
x^2+x-6-x^2-3x+4-3x=0
x-6-3x+4-3x=0
-5x-2=0
-5x=2
х=2/-5
х=-0,4
2)15х²-(3х-2)(5х+4)=16
15х²-(15х²-10х+12х-8)=16
15х²-(15х²+2х-8)=16
15х²- 15х²-2х+8 =16
-2х=16-8
-2х=8
х=-4
3)14x-8x²+42-24x=16x+2-8x²-x+15
14x-8x²-24x-16x+x+8x²=2+15-42
-25x=-25
x=25/25
x=1
Объяснение: