М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
akon1708
akon1708
24.06.2021 13:27 •  Алгебра

Финансовая грамотность". Можно и без пояснения 1. Футболка стоила 800 рублей. После снижения цены она стала стоить 680 рублей. На сколько процентов была снижена цена на футболку?

2. Флакон шампуня стоит 160 рублей. Какое наибольшее число флаконов можно купить на 1000 рублей во время распродажи, когда скидка составляет 25% ?

3. Магазин закупает цветочные горшки по оптовой цене 120 рублей за штуку и продает с наценкой 20%. Какое наибольшее число таких горшков можно купить в этом магазине на 1000 рублей?

👇
Ответ:
dimatuz2018
dimatuz2018
24.06.2021

Решение.

1-й . Примем 800 рублей за 100%, а 680 рублей – за x%, тогда можно записать

,

откуда

%,

то есть цена футболки была снижена на

100-85=15%.

2-й . Цена на футболку была снижена на 800-680=120 рублей. Это составляет

,

то есть снижена на 15%.

4,7(68 оценок)
Ответ:
Ilya78324
Ilya78324
24.06.2021

1. 800:100%=8(р) - приходится на 1%

800-680=120(р) - на столько понизалась цена

120:8=15% -на 15%

2.160- старая цена- это 100%

х - новая цена- это 75%

х=160*75/100=120

1000 рублй разделим на новую цену

1000/ 120=8,33(3)

ответ 8.

3.(120·20%) = 120·0,2 = 24 (рубля)

120+24 = 144

1000:144 = 6 горшков (остаток 136 рублей

4,8(16 оценок)
Открыть все ответы
Ответ:
Браснуев21
Браснуев21
24.06.2021
 2       1                                                                                                                ₋-- =  ---                                                                                                              10      5
    15          3                                                                                                           3 --- = 3  ---                                                                                                          100        20
4,8(21 оценок)
Ответ:
Arseni01
Arseni01
24.06.2021

Искомая функция f(x)= ax + h.

Найдем значения искомой функции в заданных точках х:

f(1)=a\cdot1+h=a+h

f(2)=a\cdot2+h=2a+h

f(3)=a\cdot3+h=3a+h

f(4)=a\cdot4+h=4a+h

f(5)=a\cdot5+h=5a+h

Кроме этого, для каждого из аргументов есть еще и экспериментальное значение, которое обозначим через функцию g(x):

g(1)=0.1;\ g(2)=0.8;\ g(3)=0.7;\ g(4)=2.8;\ g(5)=1.6

Составим функцию z(a;\ h), которая будет суммировать квадраты разностей значений функций f(x) и g(x) соответствующих аргументов:

z(a;\ h)=(a+h-0.1)^2+(2a+h-0.8)^2+(3a+h-0.7)^2+\\+(4a+h-2.8)^2+(5a+h-1.6)^2

Исследуем эту функцию на экстремум.

Найдем частные производные:

z'_a=2(a+h-0.1)+2(2a+h-0.8)\cdot2+2(3a+h-0.7)\cdot3+\\+2(4a+h-2.8)\cdot4+2(5a+h-1.6)\cdot5

z'_a=2a+2h-0.2+8a+4h-3.2+18a+6h-4.2+\\+32a+8h-22.4+50a+10h-16

z'_a=110a+30h-46

z'_h=2(a+h-0.1)+2(2a+h-0.8)+2(3a+h-0.7)+\\+2(4a+h-2.8)+2(5a+h-1.6)

z'_h=2a+2h-0.2+4a+2h-1.6+6a+2h-1.4+\\+8a+2h-5.6+10a+2h-3.2

z'_h=30a+10h-12

Необходимое условие экстремума: равенство нулю частных производных:

\begin{cases} 110a+30h-46=0\\ 30a+10h-12=0\end{cases}

Домножим второе уравнение на (-3):

\begin{cases} 110a+30h-46=0\\ -90a-30h+36=0\end{cases}

Складываем уравнения:

20a-10=0

a=0.5

Подставим значение а во второе уравнение исходной системы:

30\cdot0.5 +10h-12=0

15+10h-12=0

10h=-3

h=-0.3

Точка (0.5; -0.3) - предполагаемая точка экстремума.

Найдем вторые частные производные функции:

z''_{aa}=(110a+30h-46)'_a=110

z''_{ah}=(110a+30h-46)'_h=30

z''_{hh}=(30a+10h-12)'_h=10

Рассмотрим выражение:

\Delta=z''_{aa}z''_{hh}-(z''_{ah})^2=110\cdot10-30^2=200

Так как \Delta0 и z''_{aa}0, то точка (0.5; -0.3) является точкой минимума.

Значит, в точке (0.5; -0.3) функция z(a;\ h) имеет минимум.

Тогда, значения a=0.5 и h=-0.3 есть искомые коэффициенты функции f(x).

f(x)= 0.5x -0.3

ответ: f(x)= 0.5x -0.3


Экспериментально получены пять значений искомой функции y=f(x) при пяти значениях аргумента x: 1, 2,
4,4(19 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ