task/30647175 Решить уравнение √(3x²- 4x+15) +√(3x²- 4x+8) = 7
решение ОДЗ : x ∈ ( - ∞ ; ∞ ) , т.к.
3x²- 4x+8=3(x -2/3)²+20/3 ≥ 20/3 > 0 || D₁=2² -3*8 = -24 < 0 || следовательно и 3x²- 4x+15 = ( 3x²- 4x+8 ) + 7 > 0 * * * 3(x -2/3)² +41/3 ≥ 41/3 * * *
замена : t = 3x²- 4x+ 8 ≥ 20/3 ; √(t +7) + √t =7 ⇔√( t +7 ) = 7 - √t
возведем обе части уравнения √( t +7 ) = 7 - √t в квадрат
* * * необходимо 7 - √t ≥ 0 ⇔ √t ≤ 7 ⇔ 0 ≤ t ≤ 49 * * *
t +7 = 49 -14√t + t ⇔ 14√t = 42 ⇔ √t =3 ⇔ t = 9 || 7 - √t = 4 >0 ||
3x²- 4x+8 = 9 ⇔ 3x²- 4x -1 =0 ; D₁ = 2² -3*(-1) =7= (√7)²
x₁ =(2 -√7) / 3 ; x₂ = (2+√7)/3 .
ответ : (2 ±√7)/3 .
1) f(x) = x^2 - 6x + 5
D(f) = R
1) Знайдемо проміжки монотоності:
f`(x) = 2x - 6 = 2(x - 3)
f`(x) = 0
2(x - 3) = 0
x = 3
(дивись малюнок)
f(x) спадає якщо х ∈ (-∞; 3) і зростає якщо х ∈ (3; +∞)
2) знайдемо точки екстремума.
х(min) = 3 ⇒ y(min) = 3² - 6 * 3 +5 = 9 - 18 + 5 = -4
точки max не існеє.
2) f(x) = x^4 - 2x^2
D(f) = R
1) Знайдемо проміжки монотоності:
f`(x) = 4x³ - 4х = 4х(x² - 1) = 4х(х - 1)(х + 1)
f`(x) = 0
4х(х - 1)(х + 1) = 0
х = 0, х = 1, х = -1
(дивись малюнок)
f(x) спадає якщо х ∈ (-∞; -1) і (0; 1);
зростає якщо х ∈ (-1; 0) і (1; +∞)
2) знайдемо точки екстремума.
х(min) = -1 ⇒ y(min) = (-1)⁴ - 2 * (-1)² = 1 - 2 = -1
х(min) = 1 ⇒ y(min) = 1⁴ - 2 * 1² = 1 - 2 = -1
х(max) = 0 ⇒ y(max) = 0⁴ - 2 * 0² = 0
a > b a,b > 0
a/b > 1
(a^m)^n = a^(mn)
a^m * a^n = a^(m + n)
a^m/a^n = a^(m - n)
12^67 / 8^77 = (3*4)^67 / (2^3)^77 = 3^67*(2^2)^67 / 2^231 = 3^67 * 2^134 / 2^231 = 3^67 / 2^97 = 3^3*3^64 / 2*2^96 = 27/2 * (3^2)^32/(2^3)^32 = 27/2 * 9^32/8^32 = 27/2 * (9/8)^32
27/2 > 1
(9/8)^32 > 1
27/2 * (9/8)^32 > 1
12^67 > 8^77