Согласно графика, координаты точки пересечения графиков (2; -2)
Объяснение:
1. Функция задана формулой y = 3x – 4. Принадлежат ли графику функции точки А (1;1) и В (2; 2)?
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
а) А (1;1) y = 3x – 4
1=3*1-4
1≠ -1, не принадлежит.
б)В (2; 2) y = 3x – 4
2=3*2-4
2=2, принадлежит.
2. Постройте график функции y= – 3x + 4 и укажите координаты точек пересечения графика с осями координат.
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
y= – 3x + 4
Таблица:
х -1 0 1
у 7 4 1
Согласно графика, координаты точки пересечения с осью Ох (4/3; 0)
Согласно графика, координаты точки пересечения с осью Оу (0; 4)
3. Постройте график зависимости y = kx, если он проходит через точку А (4; -8). Найдите угловой коэффициент k.
Нужно подставить известные значения х и у (координаты точки А) в уравнение и вычислить k:
-8=k*4
-4k=8
k= -2
Уравнение: у= -2х
Таблица:
х -1 0 1
у 2 0 -2
4. Найдите точку пересечения графиков функций y = –2 и y = –0,5x – 1.
(Постройте два графика в одной системе координат и запишите координаты точки пересечения двух графиков).
а)y = –2
График - прямая линия, параллельна оси Ох и проходит через
точку у= -2;
б)y = –0,5x – 1
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -2 0 2
у 0 -1 -2
Согласно графика, координаты точки пересечения графиков (2; -2)
скорость течения --- 5 км/час;
время против течения --- ?,час, но на 10>, чем по течению;
собств. скорость лодки ? км/час
Решение.
Х км/час скорость лодки в неподвижной воде ( собственная скорость );
(Х - 5) км/час скорость против течения;
96/(Х-5) час время, затраченное против течения;
(Х + 5) км/час скорость по течению;
96/(Х+5) час время, затраченное по течению;
96/(Х-5) - 96/(Х+5) = 10 (час) разница во времени по условию;
приведем дроби к общему знаменателю (Х+5)(Х-5) = (Х^2 - 25) и умножим на него все члены уравнения:
96(Х+5) - 96*(Х-5) = 10*(X^2 - 25);
96Х + 96*5 - 96Х + 96*5 = 10X^2 - 250;
10Х^2 = 1210; X^2 = 121;
Х = 11(км/час).
Отрицательную скорость ( второй корень уравнения) а расчет не принимаем!
ответ : Скорость лодки в неподвижной воде 11 км/час.
Проверка: 96:(11-6) - 96:(11+6) = 10; 10 = 10