у = 5х - 3
Точка А (0; -3)
5 · 0 - 3 = -3
-3 = -3
Точка А (0; -3) принадлежит графику функции у = 5х - 3.
Точка В (-1; -4)
5 · (-1) - 3 ≠ -4
-5 - 3 ≠ -4
-8 ≠ -4
Точка В (-1; -4) не принадлежит графику функции у = 5х -3.
Точка С (0; -3)
5 · (-2) - 3 = -13
-13 = -13
Точка С (-2; -13) принадлежит графику функции у = 5х -3.
Точка М (3; 12)
5 · 3 - 3 = 12
15 - 3 = 12
12 = 12
Точка М (3; 12) принадлежит графику функции у = 5х -3.
Точка Е(0,2; -2)
5 · 0,2 - 3 = -2
1 - 3 = -2
-2 = -2
Точка Е(0,2; -2) принадлежит графику функции у = 5х -3.
Точка К (-0,4; -1)
5 · (-0,4) - 3 ≠ -1
-2 - 3 ≠ -1
-5 ≠ -1
Точка В (-0,4; -1) не принадлежит графику функции у = 5х -3.
Обобщённый ответ: графику функции у = 5х -3 принадлежат точки А(0;-3), С(-2;-13), М(3;12) и Е(0,2;-2).
не являются скрещивающимися.
Объяснение:
Вытаскиваем из уравнений точки и направляющие векторы:
прямая L1: А1(1; 2; 3) k1(4;6;8)
прямая L2: А2(2;4;6) k2(2;3;4)
Найдём вектор А1А2 = (2-1;4-2;6-3) = (1; 2;3)
Вычислим смешанное произведение векторов:
4 2 1
(k1 * k2 * A1A2) = 6 3 2 =
8 4 3
3 2 6 2 6 3
4* 4 3 - 2* 8 3 + 1* 8 4 = 4*(9 - 8) - 2*(18 - 16) + (24 - 24) = 0
Таким образом, векторы k1, k2, A1A2 компланарны, а значит прямые L1 и L2 лежат в одной плоскости и могут пересекаться, быть параллельными или совпадать.
5 см или 4 см.
Объяснение:
1) Пусть основание 6 см, тогда стороны по (16-6):2=5 см.
2) Пусть стороны по 6 см, тогда основание 16-6-6=4 см.