Скорость первого рабочего v₁ деталей в минуту Скорость второго рабочего v₂ деталей в минуту Пусть в партии S деталей. Тогда (S-15)/v₁=S/(2v₂) - время, за которое 2-й сделал половину партии. S/v₁=(S-8)/v₂ - время, за которое 1-ый сделал всю партию. Если х - искомое количество деталей, то (S-x)/v₂=S/(2v₁) - время, за которое 1-ый сделал половину партии. Отсюда x=S(1-v₂/(2v₁)). Из 1-го и 2-го уравнений получим v₁/v₂=S/(S-8) и v₁/v₂=2(S-15)/S, т.е. S^2=2(S-8)(S-15). Решаем это квадратное уравнение, получаем корни 6 и 40. 6 не подходит, т.к. количество деталей больше 6. Значит S=40, откуда v₁/v₂=40/(40-8)=5/4, откуда x=40*(1-4/10)=24. ответ: 24 детали.
3х²- 8x - 3 = 0;
х=(4±√(16+9))/3=(4±5)/3; х=3; х= -1/3, 2 корня, т.к. дискриминант равен 25>0,
2) 2x² - 6x + 7 = 0;
D=36-4*2*7=36-56=-20<0, значит, корней нет