В решении.
Объяснение:
Известно , что график функции y=k/x проходит через точку A(-4;-0,25). Проходит ли это график через точку:
а)B(-8;-0,125);
б)C(50;-0,02);
в)D(-40;-0,05)?
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
1) Сначала нужно найти k, чтобы определить уравнение функции.
у=k/x
A(-4;-0,25)
Нужно в уравнение подставить известные значения (координаты точки А):
-0,25 = k/-4
k= (-0,25)*(-4)
k=1;
Уравнение функции имеет вид:
у = 1/х.
2) Теперь можно определять принадлежность точек графику:
а)B(-8;-0,125);
у=1/х
-0,125 = 1/-8
-0,125 = -0,125, проходит.
б)C(50;-0,02);
у=1/х
-0,02 = 1/50
-0,02 ≠ 0,02, не проходит.
в)D(-40;-0,05).
у=1/х
-0,05 = 1/-40
-0,05 ≠ -0,025, не проходит.
x2 + 11x - 1 = 0
знайдемо дискримінант квадратне рівняння
d = b2 - 4ac = 112 - 4·1·(-1) = 121 + 4 = 125
так як дискримінант більше нуля то, квадратне рівняння має два дійсних кореня:
x1 = -11 - √1252·1 = -5.5 - 2.5√5 ≈ -11.090169943749475x2 = -11 + √1252·1 = -5.5 + 2.5√5 ≈ 0.09016994374947451
а-3 свободный член
Объяснение: