Допустим, что
. Тогда имеем уравнение
, не имеющее решений, поскольку в левой части число неположительное, а в правой - положительное, т.е. левая часть никак не может быть равна правой. Т.е. 
Преобразуем правую часть:

Перенесем все влево с противоположным знаком:

Поскольку
, можем разделить обе части уравнения на
. В итоге имеет равносильное исходному уравнение


Заметим, что
является корнем уравнения относительно тангенса. Тогда по теореме Виета второй корень равен
.
Соответственно, имеем два случая: или
или
.
1 случай.

2 случай.

Имеем две серии корней.
ОТВЕТ: π/4 + πk, k ∈ Z; -arctg(1/4) + πn, n ∈ Z.
Над любым вектором, даже нулевым, должна стоять стрелка, или черточка, у меня нет такой возможности, но подразумеваем, векторы записаны верно. Чтобы найти координаты вектора, надо от координат конца т.е. точки D отнять координаты начала, т.е. точки С,
СD(18-(-12); -9-21) получим СD(30; -30); а координаты второго вектора j тоже известны, это орт, (0;1). Скалярное произведение векторов - это сумма произведений соответствующих координат, т.е. 30*0+(-30)*1=-30.
Скалярное произведение между векторами -30, значит, угол между ними тупой.)
ответ -30
Решение в приложении