1)0,7/4=0,175
2)1/2*1/3=1/6=0,166
3)1/3-1/4=1/12=0,08
4)0,72*0,25=0,18
сначало: 0,08; 0,166; 0,175; 0,18.
Нет, не могли. Единственное такое число - 175.
5 в результате деления может получиться только в случаях, если исходное число оканчивается на 5 или на 0. Так как произведение цифр исходного числа отлично от нуля (делить на 0 нельзя), то ни одного нуля в составе трехзначного числа нет, и оканчивается это число на 5.
Можно записать в таком виде:
Исходное число: 100a + 10b + c
равно, по условию, произведению цифр числа и числа 5: 5*a*b*c
100a + 10b + c = 5 * a*b*c
Подставим 5 вместо с:
100a + 10 b + 5 = 5 * 5*a*b
100a + 10b + 5 = 25*a*b
Нетрудно убедиться, что делимое кратно 25.
Кроме того, в состав исходного числа могут входить только нечетные цифры, так как любая четная на первых двух местах даст в произведении число, оканчивающееся на 0, а этого, как мы выяснили, не может быть.
Таким образом, трехзначные числа, кратные 25 и имеющие в своем составе только нечетные цифры:
175; 375; 575; 775; 975
Произведение цифр данных чисел:
35; 105; 175; 245; 315
Очевидно, что единственное число, которое отвечает условию задачи, - 175. Поэтому Коля и Оля загадали одно и то же число, и разные числа загадать не могли.
Вот накалякал. Разбирайся :)
xy/(x+y) = 5
xz/(x+z) = 7
yz/(y+z) = 9
xy = 5x + 5y
xz = 7x + 7z
yz = 9y + 9z
x(y-5) = 5y
x = 5y/(y-5)
5yz/(y-5) = 35y/(y-5) + 7z
5yz = 35y + 7z * (y-5)
5yz = 35y + 7yz - 35z
2yz + 35y = 35z
y(2z + 35) = 35z
y = 35z/(2z + 35) = z/(2z/35 + 1)
35z^2/(2z + 35) = 315z/(2z + 35) + 9z
35z^2 = 315z + 9z*(2z + 35)
35z^2 = 315z + 18z^2 + 315z
17z^2 = 630z
z=630/17
y = 35*630/(2*630/17 + 35)/17 = 35*630/(1260 + 595) = 22050/1855 = 630 / 53
x = 5*630/(630/53 - 5)/53 = 5*630/((630/53 - 5)*53) = 5*630/365 = 630/73
Если что, пиши в личку...