Для решения этого уравнения используем метод замены — заменим одну из частей уравнения на временную переменную.
В данном случае удобнее всего будет заменить (x - 2)² t = (x - 2)²
Также не следует забывать, что квадрат числа не может принимать отрицательные значения, поэтому на t будет наложено ограничение t ≥ 0
Получим новое уравнение уже с другой переменной t² + t - 6 = 0
Решим это квадратное уравнение удобным для нас В данном случае удобнее всего решать с теоремы Виета, но можно и с дискриминанта. Получим корни t₁ = -3 t₂ = 2
Теперь вернемся к замене. t ≥ 0, значит корень -3 не удовлетворяет условию. Корень 2 подходит, поэтому подставим вместо t выражения для замены (x - 2)² = 2
Извлечем квадратный корень из обеих частей уравнения, при этом получим уже совокупность уравнений x - 2 = ±√2
[ x - 2 = √2 [ x - 2 = -√2
[ x = 2 + √2 [ x = 2 - √2
Это и есть решения уравнения ответ: 2 + √2; 2 - √2
[ - 1/2; 0).
Объяснение:
Решение иррационального неравенства вида √f(x) < g(x) равносильно решению системы неравенств:
{f(x) ≥ 0,
{g(x) > 0,
{f(x) < g²(x).
В нашем случае:
√(2х+1) < 1-х
{2х + 1 ≥ 0, (1)
{1 - х > 0,. (2)
{2х+1 < (1 - х)². (3)
Рассмотри отдельно решение первого неравенства:
2х + 1 ≥ 0
2х ≥ - 1
х ≥ - 1/2
хє[-1/2; + ∞).
Рассмотри отдельно решение второго неравенства:
1 - х > 0
- х > - 1
х < 1
хє(-∞; 1).
Одновременным решением двух первых неравенств является промежуток [- 1/2; 1).
Рассмотрим решение третьего неравенства:
2х+1 < (1 - х)²
2х+1 < 1 + х² - 2х
0 < - 2х - 1 + 1 + х² - 2х
х² - 4х > 0
х(х - 4) > 0
___+__(0)___-__(4)__+__ х
хє(-∞; 0) ∪ (4; +∞)
Решением системы трёх неравенств является пересечение множеств
[- 1/2; 1) и (-∞; 0) ∪ (4; +∞).
Решением являются х є [ - 1/2; 0).