Пусть V = R3 [x] - векторное пространство многочленов p (x) с вещественными коэффициентами степени не более 3 и пусть p"(x) - вторая производная от p (x) относительно x. Рассмотрим линейное отображение f : V −→ V такой, что:
f(p(x)) = q(x)p"(x),
где q(x) = -2x(x − 2).
1) Вычислите соответствующую матрицу f относительно оснований:
{1, x, x^2, x^3}
2) Вычислите основу Im (f), составленную элементами в V .
3) Вычислите собственные значения f и базис для каждого собственного пространства f .
4) Докажите или опровергните: f - простой эндоморфизм (простой элемент в кольце эндоморфизма).
Вычислите f^(-1)(p(x)), где p(x) = 4q(x).
Согласенд даже на частичный ответ
б)Перенесём правую часть уравнения влевую часть уравнения со знаком минус.Уравнение превратится изa*(a - 3) = 2*a - 6вa*(a - 3) + -2*a + 6 = 0Раскроем выражение в уравненииa*(a - 3) - 2*a + 6Получаем квадратное уравнение 2 6 + a - 3*a - 2*a = 0 Это уравнение вида a*x^2 + b*x + c.Квадратное уравнение можно решитьс дискриминанта.Корни квадратного уравнения: ___ - b ± \/ D a1, a2 = , 2*a где D = b^2 - 4*a*c - это дискриминант.Т.к.a = 1b = -5c = 6, тоD = b^2 - 4 * a * c = (-5)^2 - 4 * (1) * (6) = 1Т.к. D > 0, то уравнение имеет два корня.a1 = (-b + sqrt(D)) / (2*a)a2 = (-b - sqrt(D)) / (2*a)a1 = 3a2 = 2