(см. объяснение)
Объяснение:
Введем функции и
. Про вторую сразу скажем, что
, но на этом не остановимся. Видим, что в степени у нас модуль, а значит самое маленькое, что мы можем получить - это
при
или
. Тогда наименьшее значение этой функции будет равно
.
Теперь разберемся с . У нас есть квадратный корень, поэтому все значения функции точно
. Но и здесь мы идем дальше. Поменяем временно
на букву
. Тогда будет
. Под корнем парабола, ветви которой направлены вниз, а значит есть наибольшее значение, равное
при
, откуда
.
Наибольшее значение равно
и достигается при
. Наименьшее значение
равно
и достигается при
или
.
Тогда единственный корень исходного уравнения .
Уравнение решено!
7/12
Объяснение:
Заштрихованная фигура состоит из двух криволинейных трапеций. Одна, находящаяся над осью абсцисс, ограничена графиком y = x², двумя вертикальными прямыми x = -1 и x = 0, а также самой осью Ox. Вторая, находящаяся под осью абсцисс (из-за этого ее площадь возьмем со знаком минус), ограничена графиком y = x³, теми же вертикальными прямыми и той же осью Ox.
Тогда площадь S рассматриваемой фигуры будет равна сумме двух определенных интегралов (один — от x², другой — от x³ со знаком минус), оба вычисленных на отрезке [-1; 0]: