М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
rulmich1203p0dlzb
rulmich1203p0dlzb
31.12.2020 17:50 •  Алгебра

Порівняйте значення виразів: а) 126^12 і 24^18; б) 31^11 і 17^14; в) 48^25 і 344^17
.
Відповідь обґрунтуйте.

👇
Ответ:
45454521
45454521
31.12.2020

Объяснение:

а) 126^12 и 24^18

126^12 = (6*3*7)^12 = 6^12*3^12*7^12 = 6^12*3^6*3^6*7^12

24^18 = 6^18*4^18 = 6^12*6^6*4^18 = 6^12*3^6*2^6*64^6

Одинаковые части 6^12*3^6 можно сократить. Остается сравнить:

3^6*7^12 и 2^6*64^6

3^6*7^12 = 3^6*49^6 = 147^6

2^6*64^6 = 128^6

Ясно, что 147^6 > 128^6, поэтому:

126^12 > 24^18

б) 31^11 и 17^14

31^11 < 32^11 = 16^11*2^11

17^14 > 16^14 = 16^11*16^3

Сократим 16^11 и сравним 2^11 и 16^3

16^3 = (2^4)^3 = 2^12 > 2^11

Получаем:

31^11 < 32^11 = 16^11*2^11 < 16^11*16^3 = 16^14 < 17^14

31^11 < 17^14

в) 48^25 и 344^17

48^25 = 48^17*48^8

344^17 = 8^17*43^17 > 8^17*42^17

8^17*42^17 = 8^17*6^17*7^17 = 48^17*7^17

Сократим 48^17 и сравним 48^8 и 7^17:

7^17 = 7*7^16 = 7*(7^2)^8 = 7*49^8 > 48^8

Получаем:

344^17 > 8^17*42^17 = 48^17*7^17 > 48^17*48^8 = 48^25

48^25 < 344^17

4,5(10 оценок)
Открыть все ответы
Ответ:
Annarasumanara2002
Annarasumanara2002
31.12.2020

Событие A₁- " первая деталь имеет дефект"

Противоположное ему событие:

Â₁- " первая деталь не имеет дефекта"

Событие A₂- " вторая  деталь имеет дефект"

Противоположное ему событие:

Â₂- " вторая  деталь не имеет дефекта"

и так далее

до (N+3) cобытия

A(N+3)-" N+3-я деталь имеет дефект"

Â(N+3)-" N+3-я деталь  не  имеет дефекта"

a) A-" ни одна из деталей не имеет дефекта

A=Â₁∩Â₂·∩..∩Â(N+3)

б)В-"по крайней  мере  одна из деталей  имеет дефект"

B=(A₁∩Â₂·∩..∩Â(N+3)∪Â₁∩А₂∩..∩Â(N+3)∪...∪Â₁∩Â₂∩..∩А(N+3))∪

∪(A₁∩А₂∩..∩Â(N+3)∪Â₁∩А₂∩А₃∩..∩Â(N+3)∪...∪Â₁∩Â₂...∩А(N+2)∩А(N+3))∪

∪...(A₁∩A₂·∩..∩A(N+3))

в)C-" только одна  из деталей  имеет дефект"

С=A₁∩Â₂·∩..∩Â(N+3)∪Â₁∩А₂∩..∩Â(N+3)∪...∪Â₁∩Â₂∩..∩А(N+3)

г) D-"не более двух деталей  имеют дефект

Значит две, одна или ни одной:

D=(A₁∩А₂∩..∩Â(N+3)∪Â₁∩А₂∩А₃∩..∩Â(N+3)∪...∪Â₁∩Â₂...∩А(N+2)∩А(N+3))∪

(Это две1 и 2; 1и 3;  ...  предпоследняя и последняя)

∪(A₁∩Â₂·∩..∩Â(N+3)∪Â₁∩А₂∩..∩Â(N+3)∪...∪Â₁∩Â₂∩..∩А(N+3))∪

(Это одна;  1 или вторая 2или ... последняя)

∪(Â₁∩Â₂·∩..∩Â(N+3))

(это событие А - ни одна  из  деталь не имеет дефекта, все без дефекта)

4,4(9 оценок)
Ответ:
Xzxzxzxzxzzxzxz
Xzxzxzxzxzzxzxz
31.12.2020
Уравнение четвёртой степени имеет вид:
   \alpha _0x^4+ \alpha _1x^3+ \alpha _2x^2+ \alpha _3x+ \alpha _4=0
Разделим обе части на коэффициент \alpha _0, получаем
             x^4+ \alpha x^3+ bx^2+cx+d=0
где a, b, c, d –  произвольные вещественные числа.

Уравнения вида приводится уравнение четвёртой степени, у которых отсувствует третьей степени., поэтому нужно сделать замену переменных, тоесть
   x=i- \frac{ \alpha }{4}, где \alpha - коэффициент перед х^3 и 4 - произвольные вещественные числа

В нашем случае такое уравнение: x^4+6x^3-21x^2+78x-16=0
Заменим x=i- \frac{6}{4} =i-1.5, получаем
 (i-1.5)^4+6(i-1.5)^3-21(i-1.5)^2+78(i-1.5)-16=0\\ i^4-6i^3+13.5i^2-13.5i+5.0625+6i^3-27i^2+40.5i-20.25-21i^2+\\+63i-47.25+78i-117-16=0\\ i^4-34.5i^2+168i-195.4375=0

Получаем кубическое уравнение: 2s^3-ps^2-2rs+rp- \frac{q^2}{4}=0
В нашем случае: p=-34.5;\,\,\,\,q=168;\,\,\,\,r=-195.4375
Подставляем и получаем уравнение
  2s^3+34.5s^2+2\cdot195.4375s+34.5\cdot195.4375- \frac{168^2}{4}=0\\ 64s^3-1104s^2+12508s-10029=0
Разложим одночлены в сумму нескольких
   64s^3-48s^2+1152s^2-864s+13372s-10029=0
Выносим общий множитель
16s^2(4s-3)+288s(4s-3)+3343(4s-3)=0\\ (4s-3)(16s^2+288s+3343)=0\\ s=0.75
Уравнение 16s²+288s+3343=0 решений не имеет, так как D<0

Таким образом для решения уравнения остается квадратное уравнение
i^2+i \sqrt{2s-p} - \frac{q}{2\sqrt{2s-p}}+s=0
Заменяем
  i^2+i\sqrt{2\cdot0.75+34.5}- \frac{168}{\sqrt{2\cdot0.75+34.5}} +0.75=0\\ 4i^2+24i-53=0\\ D=b^2-4ac=576+848=1424\\ i= \dfrac{-6\pm \sqrt{89} }{2}

Возвращаемся к замене
  x=i-1.5=\dfrac{-6\pm \sqrt{89} }{2}- \dfrac{3}{2} =\dfrac{-9\pm \sqrt{89} }{2}

Окончательный ответ: \dfrac{-9\pm \sqrt{89} }{2}.
4,6(12 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ