М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
айфон66666
айфон66666
01.03.2020 19:16 •  Алгебра

Какая монотонность у функции на картинке?


Какая монотонность у функции на картинке?

👇
Открыть все ответы
Ответ:
verenikinaulia
verenikinaulia
01.03.2020

хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз хз

4,8(43 оценок)
Ответ:
ната1187
ната1187
01.03.2020

Формула объема призмы: Площадь основания (Sосн.) умножить на высоту (h), тобишь:

Vпризмы=Sосн.*h

Площадь основания правильного шестиугольника равна: три корня из трех на два умножить на сторону в квадрате(a), тобишь:

Sосн.=3√3/2*a^2

Из текста задачи ясно, что объем не изменился. Получаем: V1=V2, а сторона основания второй призмы в два раза меньше, и обозначив сторону первой за a, сторону второй обозначим через a/2.

Приравниванием формулы объема первой и второй призмы,обозначаем искомую высоту через x и получаем уравнение:

3√3/2*a^2*24=3√3/2*a^2/4*x

Делим обе части уравнения на 3√3/2 и получаем:

a^2*24=a^2/4*x

Чтобы избавится от знаменателя во второй части домнажаем обе части на 4:

96*a^2=a^2x

x=96a^2/a^2

В результате a^2 сокращается и остается 96:

x=96.

ответ:96 см.


4,8(85 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ