1). 7x² - 8x²y - 3yz + *
Известная часть многочлена: 7x² - 8х²y - 3yz
Если из данной части вывести переменную х, добавив вместо звездочки, скажем, -(7x² - 8х²y), то останется выражение -3yz, не являющееся многочленом по определению.
Поэтому добавим к оставшемуся выражению -3yz еще у²:
7x² - 8x²y - 3yz + * = -3уz + у²
* = -3yz + y² - 7x² + 8x²y + 3yz
* = y² - 7x² + 8x²y
Вместо у² можно взять любой другой одночлен, не содержащий переменную х.
2). (3n + 8) - (6 - 2n) = 3n + 8 - 6 + 2n = 5n + 2
При любом n ∈ N, выражение 5n + 2 при делении на 5 даст остаток 2.
ответ: 0,02; 0,32; 0,216.
Объяснение:
№ Д4.10.
Пусть событие А заключается в том, что объём воды в случайно выбранной бутылке отличается от нормы не более чем на 0,2 л, а событие В - более чем на 0,2 л. Фактически нам нужно найти вероятность события В р(В). По условию, вероятность события А р(А)=0,98. Так как события А и В несовместны и притом образуют полную группу событий, то р(А)+р(В)=1. Отсюда р(В)=1-р(А)=1-0,98=0,02. ответ: 0,02.
№ Д4.11.
Пусть событие А заключается в том, что школьнику достанется задача на тему "формулы приведения", а событие В - в том, что ему достанется задача на тему "универсальная тригонометрическая подстановка", а событие С - в том, что достанется задача на одну из этих тем. Тогда С=А+В, а так как события А и В несовместны, то р(С)=р(А)+р(В)=0,24+0,08=0,32. ответ: 0,32.
№ Д4.12.
Пусть событие А1 заключается в том, что занят первый оператор, событие А2 - второй, событие А3 - третий, а событие В - что заняты все три оператора. Тогда В=А1*А2*А3, а так как по условию события А1, А2 и А3 независимы, то р(В)=р(А1)*р(А2)*р(А3). По условию, р(А1)=р(А2)=р(А3)=0,6, и тогда р(В)=0,6*0,6*0,6=0,216. ответ: 0,216.