Пусть функция f(x) непрерывна и определена на заданном отрезке [a; b] и имеет на нем некоторое (конечное) количество критических точек. Первым делом найдем производную функции f'(x) по х.
2Приравниваем производную функции к нулю, чтобы определить критические точки функции. Не забываем определить точки, в которых производная не существует - они также являются критическими.
3Из множества найденных критических точек выбираем те, которые принадлежат отрезку [a; b]. Вычисляем значения функции f(x) в этих точках и на концах отрезка.
4Из множества найденных значений функции выбираем максимальное и минимальное значения. Это и есть искомые наибольшее и наименьшее значения функции на отрезке.
х - 3/4
3* 3/4 = 3/5* х
х = (3 * 3/4 )/ 3/5
х= 3
или 3 часа 45 минут.