Объяснение:
В основе метода математической индукции (ММИ) лежит принцип математической индукции: утверждение $P(n)$ (где $n$ - натуральное число) справедливо при $\forall n \in N$, если:
Утверждение $P(n)$ справедливо при $n=1$.
Для $\forall k \in N$ из справедливости $P(k)$ следует справедливость $P(k+1)$.
Доказательство с метода математической индукции проводится в два этапа:
База индукции (базис индукции). Проверяется истинность утверждения при $n=1$ (или любом другом подходящем значении $n$)
Индуктивный переход (шаг индукции). Считая, что справедливо утверждение $P(k)$ при $n=k$, проверяется истинность утверждения $P(k+1)$ при $n=k+1$.
Метод математической индукции применяется в разных типах задач:
Доказательство делимости и кратности
Доказательство равенств и тождеств
Задачи с последовательностями
Доказательство неравенств
Нахождение суммы и произведения
1) y=x^2+4x+1
x(0)-вершина
x(0)=-b/2a=-4/2=-2
y(0)=4-8+1=-3
Первая точка-вершина (-2;-3)
При х=0; y=1
При y=0; x^2+4x+1=0
D=16-4=12
С корнями лучше не заморачиваться, найдём по-другому)
Значит, еще одна точка (0;1)
Остальные можно подставить, например,
х=1; y=1+4+1=6
x=-1; y=1-4+1=-2
Точки (1;6), (-1;-2)
Теперь все это просто нанеси на координатную прямую, и, если точек каких-то не будет хватать, просто параллельно отрази от тех, которые мы нашли.
2)y=x^2-6x-1
x(0)=6/2=3
y(0)=9-18-1=-10
(3;-10) -вершина
x=0; y=-1. (0;-1)
х=1; y=1-6-1=-6
x=-2;y=4+12-1=15
(1;-6)
(-2;15)