Симплекс метод - это метод последовательного перехода от одного базисного решения (вершины многогранника решений) системы ограничений задачи линейного программирования к другому базисному решению до тех пор, пока функция цели не примет оптимального значения (максимума или минимума).
Симплекс-метод является универсальным методом, которым можно решить любую задачу линейного программирования, в то время, как графический метод пригоден лишь для системы ограничений с двумя переменными.
Перед тем, как перейти к алгоритму симплекс метода, несколько определений.
Всякое неотрицательное решение системы ограничений называется допустимым решением.
Пусть имеется система m ограничений с n переменными (m < n).
Допустимым базисным решением является решение, содержащее m неотрицательных основных (базисных) переменных и n - m неосновных. (небазисных, или свободных) переменных. Неосновные переменные в базисном решении равны нулю, основные же переменные, как правило, отличны от нуля, то есть являются положительными числами.
Любые m переменных системы m линейных уравнений с n переменными называются основными, если определитель из коэффициентов при них отличен от нуля. Тогда остальные n - m переменных называются неосновными (или свободными).
Алгоритм симплекс метода
Шаг 1. Привести задачу линейного программирования к канонической форме. Для этого перенести свободные члены в правые части (если среди этих свободных членов окажутся отрицательные, то соответствующее уравнение или неравенство умножить на - 1) и в каждое ограничение ввести дополнительные переменные (со знаком "плюс", если в исходном неравенстве знак "меньше или равно", и со знаком "минус", если "больше или равно").
Шаг 2. Если в полученной системе m уравнений, то m переменных принять за основные, выразить основные переменные через неосновные и найти соответствующее базисное решение. Если найденное базисное решение окажется допустимым, перейти к допустимому базисному решению.
Шаг 3. Выразить функцию цели через неосновные переменные допустимого базисного решения. Если отыскивается максимум (минимум) линейной формы и в её выражении нет неосновных переменных с отрицательными (положительными) коэффициентами, то критерий оптимальности выполнен и полученное базисное решение является оптимальным - решение окончено. Если при нахождении максимума (минимума) линейной формы в её выражении имеется одна или несколько неосновных переменных с отрицательными (положительными) коэффициентами, перейти к новому базисному решению.
Шаг 4. Из неосновных переменных, входящих в линейную форму с отрицательными (положительными) коэффициентами, выбирают ту, которой соответствует наибольший (по модулю) коэффициент, и переводят её в основные. Переход к шагу 2.
Важные условия
Если допустимое базисное решение даёт оптимум линейной формы (критерий оптимальности выполнен), а в выражении линейной формы через неосновные переменные отсутствует хотя бы одна из них, то полученное оптимальное решение - не единственное.
Если в выражении линейной формы имеется неосновная переменная с отрицательным коэффициентом в случае её максимизации (с положительным - в случае минимизации), а во все уравнения системы ограничений этого шага указанная переменная входит также с отрицательными коэффициентами или отсутствует, то линейная форма не ограничена при данной системе ограничений. В этом случае её максимальное (минимальное) значение записывают в виде .
На сайте есть Онлайн калькулятор решения задач линейного программирования симплекс-методом.
Объяснение:
1) х+2,6=3,4
х=3,4-2,6
х=0,8
2) 6х=1,2
х=1,2:6
х=0,2
3) 3х-8=15
3х=15+8=23
х= 23:3
х=7,6
4) 2х-3=5х-27
2х-5х=-27+3
-3х=-24
х=24:3
х=8
5)5 (х-2)+3х=6
5х-10+3х=6
5х+3х=6+10
8х=16
х=16:8
х=2
6) 6х-2 (4х-1)=7
6х-8х+2=7
6х-8х=7-2
-2х=5
-х=5:2
-х=2,5
х=-2,5
7) 0,2х-0,1(2х-6)=0,6
0,2х-0,2х+0,6=0,6
0,2х-0,2х=0,6-0,6
0=0
8) х-5 (х+4)=2 (х-8)+8
х-5х-20=2х-16+8
х-5х-2х=20-16+8
-6х=12
-х=12:6
-х=2
х=-2
9)х+22+8 (х-2)=3 (4-х)
х+22+8х-16=12-3х
х+8х+3х=-22+16+12
12х=6
х=6:12
х=0,5
10)х-4,2=6,9
х=6,9+4,2=11,1
х=11,1
11)0,3х=15
х=15:0,3=50
х=50
12) 3х-24=6х+3
3х-6х=3+24
-3х=27
-х=27:3
-х=9
х=-9
13) 5 (х-8)-4 (5х+2)=12
5х-40-20х-8=12
5х-20х=12+40+8
-15х=60
-х=60:15
-х=4
х=-4
14) 2х-4 (х-3)=5 (х+1)-9
2х-4х+12=5х+5
2х-4х-5х=-12+5
-7х=-7
х=7:7
х=1
все что смогла :)