М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
anyaternovskay
anyaternovskay
28.12.2022 18:32 •  Алгебра

Известно, что при некоторых натуральных значениях n значение выражения n3( степень)+3 кратно 30. Будет ли кратно 30 при тех же значениях n значение выражения n3(степень)+31n и n3(степень)-29n

👇
Ответ:
fredkalash
fredkalash
28.12.2022

:

понятно, что  n кратно 3 и оканчивается на 3.

Значит  n=30к+3

Тогда n3=27000к^3+3*900*3*к^2+3*30*9к+27

n3+31n=27000к^3+3*900*3*к^2+3*30*9к+27+31*30к+93= 27000к^3+3*900*3*к^2+3*30*9к+31*30к+120  на 30 делится

n3-29n=27000к^3+3*900*3*к^2+3*30*9к+27-29*30к-87==27000к^3+3*900*3*к^2+3*30*9к-29*30к-60 на 30 делится

4,8(44 оценок)
Открыть все ответы
Ответ:
polina7snoy
polina7snoy
28.12.2022

ответ:a<-1/12

Объяснение:

Рассмотрим функцию f(x)=sqrt(3a+x), тогда уравнение примет вид

f(f(x))=x

Поскольку функция f(x) монотонно возрастает, то исходное уравнение равносильно уравнению f(x)=x

sqrt(3a+x)=x, x>=0

3a+x=x^2

x^2-x-3a=0

D=1+12a

Найдем при каких а, получившееся квадратное уравнение имеет хотя бы один неотрицательный корень. Для этого достаточно чтобы больший корень был неотрицателен.

x=(1+sqrt(1+12a))/2>=0 <=> sqrt(1+12a)>=-1

Выходит, что если получившееся квадратное уравнение имеет хотя бы одно решение, то оно будет неотрицательно.

Значит, единственный случай, который нам подходит, это когда квадратное уравнение корней не имеет.

D=1+12a<0 <=> a<-1/12

4,7(33 оценок)
Ответ:

ответ:a<-1/12

Объяснение:

Рассмотрим функцию f(x)=sqrt(3a+x), тогда уравнение примет вид

f(f(x))=x

Поскольку функция f(x) монотонно возрастает, то исходное уравнение равносильно уравнению f(x)=x

sqrt(3a+x)=x, x>=0

3a+x=x^2

x^2-x-3a=0

D=1+12a

Найдем при каких а, получившееся квадратное уравнение имеет хотя бы один неотрицательный корень. Для этого достаточно чтобы больший корень был неотрицателен.

x=(1+sqrt(1+12a))/2>=0 <=> sqrt(1+12a)>=-1

Выходит, что если получившееся квадратное уравнение имеет хотя бы одно решение, то оно будет неотрицательно.

Значит, единственный случай, который нам подходит, это когда квадратное уравнение корней не имеет.

D=1+12a<0 <=> a<-1/12

4,6(25 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ