Подставим корни х = 3 и х=-4 в уравнение х³+рх+k = 0 для того, чтобы найти р и k. Получим систему двух уравнений с двумя неизвестными. {3³+3p+k = 0 {(-4)³-4p+k = 0
Упростим: {3p+k = - 27 {-4p+k = 64
Из первого уравнения вычтем второе и получим: 3p+k+4p-k = - 27 - 64 7p = - 81 p = - 81 : 7 p = - 13 Подставим р = - 13 в первое уравнение 3p+k = - 27 и получим: 3·(-13) + k = - 27 -39 +k = - 27 k = 39 - 27 k = 12
Теперь при p = -13 и k = 12 наш многочлен примет вид: x³-13x+12.
Этому уравнению x³-13x+12 = 0 удовлетворяют данные корни х₁ = 3 х₂ = - 4 Проверим х=1 и х = - 1 При х = 1 получаем 1³-13·1+12=0 1+12-13=0 0 = 0 верное равенство, значит, х₃= 1. При х = - 1 получаем (-1)³-13·(-1)+12=0 -1+13+12=0 24 ≠ 0 ,значит, х ≠ - 1 ответ: х₃= 1.
Возьмем за x- скорость 2 туриста. Тогда скорость первого будет x+2. Напишем время, за которое они добрались. время первого 40/(х+2) время второго 40/х Из условия ясно, что первый доехал быстрее, чем второй, значит мы можем записать уравнение:
- = 1 приводим к общему знаменателю:
= 1 Заметим, что x не равен 0, икс не равен -2. По свойству пропорций мы приходим к такому уравнению: 80=x^2+2x x^2+2x-80=0 По формуле четного корня находим дискриминант: D=p^2-ac=1+80=81; Корень из D=9 x1=-1-9=-10 (скорость не может быть отрицательной, поэтому посторонний корень) x2=-1+9=8 Итак, скорость второго туриста 8+2=10. ответ: скорость первого туриста 10 км/ч; скорость второго туриста 8км/ч
4) 2ab+10b-2a-10=2(ab+5b-a-5)=2(b×(a+5)-(a+5))=2(a+5)(b-1)
5) a⁴-16=(a²-4)(a²+4)=(a-2)(a+2)(a²+4)