11п/9 = п+(2п/9), п<11п/9, 11п/9 < (3п/2), <=> 11/9<3/2 <=> 11*2 < 3*9 <=> 22< 27, истина. т.о. 11п/9 принадлежит третьей четверти, в которой синус отрицателен, т.е. sin(11п/9) < 0. 3,14<п<3,15. 3,14*(3/2)<(3п/2)<3,15*(3/2)=4,725<5, 5<6,28=2*3,14<2п<2*3,15. (3п/2)<5<2п. Угол в 5 (радиан) принадлежит четвертой четверти, в которой косинус положителен, поэтому cos(5)>0. (3п/2)=1,5п<1,6п<2п. Угол 1,6п принадлежит четвертой четверти, в которой tg отрицателен, т.е. tg(1,6п) <0. ответ. в).
Числитель : выражение √(2-х )под знаком корня четной степени ,значит подкоренное выражение 2-х≥0 ⇒ х≤2
знаменатель : выражение √(1-х )под знаком корня четной степени ,значит подкоренное выражение 1-х≥0 ⇒ х≤1 , но при этом х+√(1-х ≠0, так как на 0 делить нельзя ,значит -х ≠√(1-х ) найдем точки в которых выполняется это равенство - х=√(1-х ), чтобы исключить х<0 х=√(1-х ), возведем обе части в квадрат х²=1-х х²+х-1=0 D=1+4=5 x₁=(-1+√5)/2 ≈0,62 x₂=(-1-√5)/2≈ -1,62 < 0 x∈(-∞ ; (-1-√5)/2) ∪ ((-1-√5)/2 ; 1]
Объяснение:
Согласно свойству арифметической прогрессии:
а (n) = а₁ + (n - 1) · d
Cледовательно:
а₁ и а₃ связаны соотношением:
а₃ = а₁ + 2d
Значит:
16 = 20 + 2d
2d = - 20+16
d = - 2
Соответственно а₁ и а₆ связаны соотношением:
а₆ = а₁ + 5d
а₆ = 20 + 5 · (-2) = 20 - 10 =10
ответ: а₆ = 10
ПРИМЕЧАНИЕ
(n) - так я обозначил подстрочный индекс n.